Ускорение свободного падения формула, от чего зависит, в чем измеряется

Ускорение свободного падения

О чем эта статья:

Сила тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей.

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже.

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Читайте также:
Равноускоренное движение - определение и график, путь, примеры

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

  • Гравитационная постоянная
    G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
  • Масса Земли
    M = 5,97 × 10 24 кг
  • Радиус Земли
    R = 6371 км

Подставим значения в формулу:

Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

Небесное тело

Ускорение свободного падения, м/с 2

Диаметр, км

Расстояние до Солнца, миллионы км

Масса, кг

Соотношение с массой Земли

Формула ускорения свободного падения

Гравитационное поле и ускорение свободного падения

Гравитационные взаимодействия тел можно описывать, применяя понятие гравитационного поля. Считают, что передача любых взаимодействий между телами реализуется при помощи полей, которые создают рассматриваемые тела. Одно из тел не оказывает непосредственного действия на другое тело, но оно создает в окружающем его пространстве гравитационное поле, особый вид материи, которая и оказывает воздействие на второе тело. Наглядной картины поля дать нельзя, понятие физического поля относят к основным понятиям, которые невозможно определить, используя другие более простые понятия. Можно только определить свойства поля.

Гравитационное поле может создавать силу. Поле зависит только от тела, которое его создает и не зависит от тела, на которое оно действует. Силовой характеристикой гравитационного поля является его напряжённость, которую обозначают $overline$. Напряженность гравитационного поля измеряется силой, которая действует на материальную точку единичной массы:

Если гравитационное поле создается материальной точкой массы $M$, то оно имеет сферическую симметрию. Это значит, что вектор $overline$ в каждой точке поля направлен к точечной массе $M$, которое создает данное поле. Из закона всемирного тяготения следует, что модуль вектора напряженности гравитационного поля:

Из формулы (2) следует, что $g$ зависит от расстояния ($r$) от источника поля до точки, в которой поле рассматривается. В таком поле движение происходит по законам Кеплера.

Гравитационные поля удовлетворяют принципу суперпозиции. Напряженность поля, которая создается несколькими телами, равна векторной сумме напряженностей полей, которые порождаются каждым телом отдельно. Принцип суперпозиции выполняется, поскольку гравитационное поле, создаваемое какой-либо массой, не зависит от присутствия других масс. Принцип суперпозиции дает возможность рассчитывать гравитационные поля, которые созданы телами, отличающимися от точечных (размеры которых следует учитывать).

Ускорение при свободном падении

Если тело около поверхности Земли движется только под воздействием силы тяжести ($overline$), говорят, что оно свободно падает. Ускорение свободного падения обозначают буквой $g$. В соответствии со вторым законом Ньютона это ускорение равно:

где $m$ – масса свободно падающего тела.

В соответствии с законом гравитации величина силы $overline$ на расстоянии $h$ от поверхности Земли равна:

где $gamma $- гравитационная постоянная; $M$ – масса Земли; $R$ – радиус Земли.

Получается, что модуль ускорения свободного падения у поверхности Земли ($hll R$) равен:

Направлено ускорение свободного падения к центру Земли.

Правая часть выражения (5) дает величину напряженности гравитационного поля Земли вблизи к ее поверхности.

Получаем, что напряжённость гравитационного поля и ускорение свободного падения в поле гравитации – это одно и то же. Поэтому эти величины были сразу обозначены одной буквой.

Читайте также:
Использование энергии солнца на Земле виды и источники солнечной энергии

Величина ускорения свободного падения на расстоянии $h$ от поверхности Земли вычисляется при помощи формулы:

В задачах о движении тел около поверхности Земли ускорение свободного падения считают постоянной величиной, которую вычисляют с помощью формулы (5), так как в сравнении с радиусом Земли рассматриваемые расстояния много меньше, чем $R$. Обычно, ускорение свободного падения на Земле считают равным $g=9,8 frac<м><с^2>$.

Примеры задач с решением

Задание. Каково ускорение свободного падения на Меркурии, если его масса меньше массы Земли в 18,18 раза, отношение радиусов Земли ($R_z$) и радиуса Меркурия ($R_m$) составляет $frac=2,63$?

Решение. Модуль ускорения свободного падения у поверхности Земли определен формулой:

Величина вектора напряженности гравитационного поля любого тела равна:

[gleft(rright)=gamma frac left(1.2right),]

если в формулу (1.2) вместо массы $M$ подставить массу Меркурия, а вместо $r$ его радиус, то мы получим ускорение свободного падения около поверхности Меркурия:

Найдем отношение выражений (1.1) и (1.3):

Считая, что нам известно ускорение свободного падения на Земле ($g=9,8 frac<м><с^2>$), выразим ускорение свободного падения на Меркурии:

Вычислим искомое ускорение:

Ответ. $g_m=3,73frac<м><с^2>$

Задание. Ускорение свободного падения на поверхности Земли считают равным $g_0$. Тело опускают в глубокую шахту под Землю. На какой глубине ($h$) от поверхности ускорение свободного падения данного тела будет составлять $g=$0,3 $g_0. $Радиус Земли равен $R. $Землю считайте однородным шаром.

Решение. Если тело находится на некоторой глубине, то считаем, что находящиеся выше слои Земли действуют на тело с силами гравитации, которые взаимно компенсируют друг друга. Поэтому тело притягивается только той массой Земли, которая находится ниже рассматриваемого тела.

В качестве основы для решения задачи используем закон всемирного тяготения в виде:

где $m$ – масса тела; $M$ – масса Земли; $r$ – расстояние от центра Земли до рассматриваемого тела, то есть:

где $R$ – радиус Земли. Мы можем использовать закон гравитации в виде (2.1), так как по условию задачи Землю считаем однородным шаром (ее масса распределена сферически симметрично), а тело материальной точкой. С другой стороны на тело действует сила, которая равна:

Приравняем правые части выражений (2.1) и (2.3), учтем (2.2):

где $M’=frac<4pi ><3>^3$ – масса слоев Земли ниже рассматриваемого тела; $rho $ – плотность Земли.

У поверхности Земли мы знаем, что:

Выразим из (2.5) плотность Земли:

Подставим результат (2.6) в формулу (2.4) выразим высоту:

Ответ. $h=Rleft(1-fracright)=0,7R$

Ускорение свободного падения

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2
Солнце 273,1
Меркурий 3,68—3,74 Венера 8,88
Земля 9,81 Луна 1,62
Церера 0,27 Марс 3,86
Юпитер 23,95 Сатурн 10,44
Уран 8,86 Нептун 11,09
Плутон 0,61

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Же»), — ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и сил инерции, вызванных её вращением, за исключением кориолисовых сил инерции [1] . В соответствии со вторым законом Ньютона, ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Значение ускорения свободного падения на поверхности Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с² [2] , а в технических расчётах обычно принимают g = 9,81 м/с² .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Оно варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [3] . Оно может быть вычислено (в м/с²) по эмпирической формуле:

Читайте также:
Напряженность электрического поля ⚡ формула, единица измерения, значение, сила напряженности точечного заряда электрического поля, модуль, от чего зависит напряженность

где — широта рассматриваемого места, — высота над уровнем моря в метрах. [4] Эта формула применима лишь в ограниченном диапазоне высот от 0 до нескольких десятков км, где убывание ускорения свободного падения с высотой можно считать линейным (на самом же деле оно убывает квадратично).

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй
h , км g, м/с 2 h , км g, м/с 2
9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центробежного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету однородным шаром массой M и вычислив гравитационное ускорение на расстоянии её радиуса R :

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736·10 24 кг , радиус R = 6,371·10 6 м ), мы получим

м/с².

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. Отличия обусловлены:

  • центробежным ускорением, которое присутствует в системе отсчёта, связанной с вращающейся Землёй [5] ;
  • отличием формы Земли от шарообразной (см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям (гравиразведка).
Ускорение свободного падения для некоторых городов
Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

«Же» используется в космонавтике, авиации, автоспорте, а также вообще в технике как единица измерения перегрузок — увеличения веса тела, вызванного его движением с ускорением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 g [источник не указан 69 дней] . Обычный человек может выдерживать перегрузки до 5 g [источник не указан 769 дней] . Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при −2. -3 g в глазах «краснеет» и человек тяжелее переносит такую перегрузку из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0 g , но в таблице ниже этот же случай рассматривается как перегрузка в 1 g . Похожий казус происходит также и при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Свободное падение

1. Свободное падение — падение тел в безвоздушном пространстве под действием притяжения к Земле. Наблюдения свидетельствуют о том, что скорость свободно падающего тела увеличивается с течением времени. Поскольку на свободно падающее тело действует единственная сила — сила тяжести, то его ускорение постоянно, т.е. свободное падение — движение равноускоренное.

Читайте также:
Электрическое напряжение определение физической величины, основные виды

2. Опыт показывает, что все свободно падающие тела движутся с одинаковым ускорением. Так, если вертикально расположенную трубку, в которой находятся три тела, имеющие разную массу: пёрышко, кусочек пробки и дробинку, перевернуть, то эти тела будут падать на дно трубки. При этом, если в трубке есть воздух, то из-за сопротивления воздуха они упадут не одновременно: дробинка упадёт раньше всех, а пёрышко позже всех тел. Если же воздух из трубки откачать, то тела упадут на дно одновременно.

3. Ускорение свободного падения обозначатся буквой ​ ( g ) ​, оно имеет одинаковое для всех тел значение при одинаковых условиях. Для широты Москвы оно равно 9,81 м/с 2 или 10 м/с 2 .

Значение ускорения свободного падения зависит от географической широты местности. Это объясняется тем, что сила тяжести, действующая на данное тело на экваторе, меньше, чем сила тяжести, действующая на него на полюсе. Поэтому ускорение свободного падения на полюсе равно 9,83 м/с 2 , а на экваторе — 9,78 м/с 2 .

Ускорение свободного падения зависит от высоты тела над поверхностью Земли. Чем выше поднято тело, тем слабее оно притягивается к Земле, тем меньше ускорение свободного падения.

4. Уравнения зависимости от времени модуля скорости, пути и модуля перемещения свободно падающего тела с высоты ​ ( h ) ​ (рис. 23).

Уравнения зависимости от времени проекции скорости и координаты свободно падающего тела с некоторой высоты тела:

Знаки проекций зависят от направления оси координат и начала координат. В соответствии с рисунком

5. График зависимости модуля скорости от времени при свободном падении приведён на рисунке (рис. 24).

6. График зависимости проекции скорости от времени при свободном падении приведены на рисунке (ось Y направлена вертикально вверх) (рис. 25).

7. Тело, брошенное вертикально вверх, тоже движется равноускоренно с ускорением ​ ( g ) ​, которое направлено вертикально вниз. В этом случае, в отличие от свободного падения, скорость и ускорение движения направлены в противоположные стороны (рис. 26).

8. Уравнения зависимости от времени модуля скорости, пути и модуля перемещения тела, брошенного вертикально вверх с начальной скоростью ​ ( v_0 ) ​:​

[ v=v_0-gt; l=v_0t-gt^2/2; s=v_0t-gt^2/2 ]

​Записанная формула зависимости пути от времени может быть использована только при движении тела в одну сторону (в данном случае вверх).

Уравнения зависимости от времени проекции скорости и координаты тела, брошенного вертикально вверх с начальной скоростью ​ ( v_0 ) ​ (ось Y направлена вертикально вверх): ​ ( v_y=v_<0y>+g_yt;y=y_0+v_<0y>t+g_yt^2/2 ) ​. Если тело брошено из начала координат, то ​ ( y_0=0 ) ​ и ​ ( y=v_0t-gt^2/2,v_y=v_0-gt ) ​.

9. График зависимости модуля скорости от времени при движении тела вертикально вверх приведён на рисунке (рис. 27).

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Свободное падение — это

1) любое движение тела в безвоздушном пространстве
2) движение тела вертикально вверх в безвоздушном пространстве
3) падение тела в безвоздушном пространстве
4) падение тела в как безвоздушном пространстве, так и в воздухе

2. В трубке, из которой откачали воздух, одновременно с одной высоты начали падать три шарика: пенопластовый, пластилиновый и железный. Какой из шариков раньше коснется дна трубки?

1) пенопластовый
2) пластилиновый
3) железный
4) все шарики коснутся дна одновременно

3. Значение ускорения свободного падения зависит от

А. Массы тела.
Б. Широты местности.

Верными являются ответы:

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

Читайте также:
Удельная теплота парообразования - обозначение, смысл

4. Мяч падает с одинаковой высоты на поверхность Земли из состояния покоя на экваторе и на широте Москвы. В отсутствие сопротивления воздуха время падения мяча на экваторе

1) равно времени его падения на широте Москвы
2) больше времени его падения на широте Москвы
3) меньше времени его падения на широте Москвы
4) ответ может быть любым в зависимости от объёма

5. Мяч падает с одинаковой высоты на поверхность Земли из состояния покоя на экваторе и на широте Москвы. В отсутствие сопротивления воздуха скорость мяча у поверхности Земли на экваторе

1) равна его скорости на широте Москвы
2) больше его скорости на широте Москвы
3) меньше его скорости на широте Москвы
4) ответ может быть любым в зависимости от объёма

6. По какой формуле рассчитывается модуль скорости тела, брошенного вертикально вверх с поверхности Земли

1) ​ ( v=v_0+gt ) ​
2) ( v=v_0-gt )
3) ( v=v_0+gt/2 )
4) ( v=gt )

7. Какой из приведённых ниже графиков является графиком зависимости модуля скорости от времени свободного падения тела?

8. Какой из приведённых ниже графиков является графиком зависимости от времени проекции скорости тела, брошенного вертикально вверх, достигшего верхней точки и затем упавшего на Землю?

9. Чему равен модуль скорости свободно падающего тела через 4 с после начала падения?

1) 0,4 м/с
2) 4 м/с
3) 40 м/с
4) 160 м/с

10. На какую высоту поднимется тело, брошенное вверх со скоростью 20 м/с?

1) 20 м
2) 10 м
3) 2 м
4) 1 м

11. Тело, брошенное вертикально вверх, долетело до верхней точки и начало падать вниз. Установите соответствие между величиной, приведенной в левом столбце, и характером её изменения, приведенном в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА
A) модуль перемещения
Б) путь
B) координата относительно поверхности Земли

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. Два тела одновременно начали свободно падать в одном и том же месте Земли: одно с высоты ​ ( h_1 ) ​, другое — с высоты ​ ( h_2 ) ​. При этом ​ ( h_1​ . Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблице.

1) ускорение движения первого тела больше ускорения движения второго тела
2) ускорение движения первого тела равно ускорению движения второго тела
3) скорость падения на Землю второго тела равна скорости падения на Землю первого тела
4) скорость падения на Землю второго тела больше скорости падения на Землю первого тела
5) тела упадут на Землю одновременно

Часть 2

13. Определите время и координату места встречи двух тел, одно из которых надает на землю с высоты 100 м, а другое тело брошено с поверхности Земли вертикально вверх со скоростью 25 м/с.

Свободное падение. Ускорение свободного падения

Урок 7. Подготовка к ЕГЭ по физике. Часть 1. Механика.

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Свободное падение. Ускорение свободного падения”

В данной теме разговор пойдёт о свободном падении тел, также поговорим об ускорении свободного падения и рассмотрим виды движений тел под действием силы тяжести.

Ранее говорилось о прямолинейном равноускоренном движении тел. Прямолинейное равноускоренное движение – это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, то есть это движение с постоянным по модулю и направлению ускорением. Ускорение — это векторная физическая величина, равная отношению изменения скорости к промежутку времени, в течении которого это изменение произошло.

Читайте также:
Уравнение Бернулли физический и геометрический смысл, вывод формулы Бернулли общего вида для идеальной жидкости, для потока реальной жидкости, для идеального газа

Одно из наиболее распространенных видов движения с постоянным ускорением — это свободное падение тел.

Под свободным падением тела понимают движение тела только под действием силы тяжести.

Долгое время считалось, что ускорение, с которым падает тело, зависит от размеров и массы этого тела. Действительно, можно с уверенностью сказать, что листок с дерева или птичье перо падают значительно медленнее, чем камень или мяч, например.

Аристотель в свое время говорил, что «точно так же, как направленное вниз движение куска свинца или золота, или любого другого тела, наделенного весом, происходит тем быстрее, чем больше его размер». А «одно тело будет тяжелее другого, имеющего тот же объем, если оно движется вниз быстрее».

Вывод о том, что все тела, независимо от их масс, форм и размеров, совершают свободное падение совершенно одинаково, на первый взгляд может показаться противоречащим повседневному опыту.

Люди привыкли к тому, что тяжелые тела достигают земли быстрее, чем легкие, падающие с той же высоты. На самом деле никакого противоречия здесь нет. Известно, что дело здесь в том, что существует сила сопротивления воздуха, которая и препятствует свободному падению. В большинстве случаев эта сила незначительна, и ею можно пренебречь, за исключением тех случаев, когда сила сопротивления воздуха становится сравнимой с силой тяжести. Поэтому в дальнейшем будем рассматривать примеры, в которых силой сопротивления воздуха можно пренебречь.

Впервые предположение о том, что все тела падают с одинаковым ускорением, высказал Галилео Галилей. Опытным путем он доказал, что это предположение верно. Галилей провел один из самых знаменитых физических экспериментов: он сбросил с Пизанской башни ядро и мушкетную пулю на глазах у многих людей. Вопреки ожиданиям, и ядро, и пуля упали одновременно.

Исаак Ньютон провел иной опыт, чтобы ещё раз доказать справедливость предположения Галилея. Он поместил в стеклянную трубку дробинки, кусочки пробки и пушинку. Перевернув трубку, он наблюдал, как сначала упали дробинки, потом кусочки пробки и только потом пушинка. Затем он откачал из трубки воздух и повторил эксперимент. Как и ожидалось, все тела упали одновременно. Это свидетельствует о том, что ускорение свободного падения постоянно для любого тела, а различные скорости падения могут быть обусловлены сопротивлением воздуха.

Таким образом, в данном месте Земли все тела, независимо от их массы и других физических характеристик, совершают свободное падение с одинаковым ускорением — ускорением свободного падения. Обозначается оно малой латинской буквой g. Его значение вблизи поверхности Земли не постоянно и варьируется от 9,78 м/с 2 на экваторе до 9,83 м/с 2 – на полюсах.

Стандартное значение ускорения свободного падения было определено как «среднее» в каком-то смысле на всей Земле, оно примерно равно ускорению свободного падения на широте 45,5º на уровне моря. В приблизительных расчётах его обычно принимают равным

Однако следует помнить о том, что данным значением ускорения свободного падения можно пользоваться только для вычислений, когда тело движется вблизи поверхности Земли. Все дело в том, что в соответствии с законом всемирного тяготения, ускорение свободного падения зависит и от массы планеты, и от ее радиуса, и от высоты над поверхностью планеты.

Ускорение свободного падения в данной точке земного шара всегда направлено вертикально вниз к центру Земли.

Рассмотрим свободное падение тел по прямолинейной и криволинейной траекториям. Сразу обратим внимание на то, что во всех случаях, которые будут рассматриваться, движение тела будет описываться двумя основными уравнениями равноускоренного движения — уравнением скорости и кинематическим уравнением равноускоренного движения.

Читайте также:
Эффект Доплера формула, исследование и автор физического явления, суть теории, применение закона на практике, примеры задач

Рассмотрим тело, которое свободно падает без начальной скорости с некоторой высоты h над поверхностью Земли.

В этом случае все время полета можно определить из кинематического уравнения для равноускоренного движения.

Если данное значение промежутка времени подставить в уравнение скорости для равноускоренного движения, то можно легко получить формулу для расчета скорости в последний момент движения.

Следующим вспомним движение тела, брошенного вертикально вверх с некоторой начальной скоростью.

При таком движении время всего полета определяется формулой:

А время подъема тела на максимальную высоту в два раза меньше всего времени движения.

Максимальную высоту подъема не трудно определить из уравнения перемещения для равноускоренного движения, зная время подъема тела и то, что в верхней точке траектории скорость тела обращается в ноль.

Что касается скорости тела в последний момент движения, то оказывается, что с какой скоростью тело брошено вертикально вверх, с такой же по модулю скоростью оно вернется обратно.

Рассмотрим падения тел по криволинейной траектории. Такое движение возникает в том случае, если вектор начальной скорости тела направлен не вертикально вверх.

Начнем с рассмотрения движения тела, брошенного в горизонтальном направлении с некоторой высоты и начальной скоростью.

При рассмотрении такого движения используется две координатные оси, так как движение происходит в двух плоскостях.

Главное помнить о том, что в горизонтальном направлении тело движется равномерно, а вот движение в вертикальной плоскостиравноускоренное, то есть в вертикальной плоскости тело движется также, как и при свободном падении без начальной скорости.

Зная высоту, с которой брошено тело, можно определить время всего движения

Как видно, время падения не зависит от начальной скорости тела и это время равно времени свободного падения тела с некоторой высоты без начальной скорости. За это время тело в горизонтальном направлении пройдет некоторое расстояние, которое называют дальностью полета, при этом чем больше начальная скорость, тем большая дальность полета тела.

Мгновенную скорость тела в любой момент времени можно рассчитать по формуле:

Рассмотрим последний вид движения под действием силы тяжести — движение тела, брошенного под углом к горизонту. Для этого решим следующую задачу.

Задача. Камень бросили под углом α к горизонту с начальной скоростью υ. Определите: скорость и координаты камня через время t после бросания, время полета, максимальную высоту, на которую поднимется тело, дальность полета и скорость тела в момент падения на Землю. Сопротивлением воздуха пренебречь.

Таким образом, для движения тела, брошенного под углом к горизонту

Основные выводы:

Было рассмотрено свободное падение тел. Ускорение, с которым движется тело во время свободного падения, называют ускорением свободного падения. Были рассмотрены виды наиболее часто встречающихся движений тел под действием силы тяжести — это свободное падение тел по прямолинейной и криволинейной траектории.

Свободное падение тела — формулы. Ускорение свободного падения.

Всем известно, что любое тело, предоставленное самому себе, падает на землю. Тела, брошенные вверх, также падают на землю. Мы говорим, что это падение происходит вследствие притяжения Земли. Это всеобщее явление, и поэтому изучение законов свободного падения тел только по действием притяжения Земли представляет особый интерес.

Однако, повседневные наблюдения показывают, что тела в обычных условиях падают по-разному. Например, тяжелый шар падает быстро, легкий лист бумаги — медленно и по сложной траектории.

  1. Реальные условиях падения тел
  2. Законы свободного падения
  3. Доказательство законов Галилея о свободном падении тел — опыты Ньютона
  4. Ускорение свободного падения.
  5. Примеры решения задач

Реальные условиях падения тел

Таким образом, характер движения, скорость и ускорение падающих тел в обычных условиях зависят от их тяжести, размеров и формы. Понятно, что такое движение тел нельзя называть свободным падением под действием только земного притяжения. Наблюдения показывают, что эти различия обусловлены также сопротивлением воздуха. Поэтому, если мы хотим изучить свободное падение тел, то должны полностью освободиться от действиях воздуха. Первым пришел к этой мысли великий итальянский ученый Галилео Галилей.

Читайте также:
Дифракционная решетка формулы, период, виды дифракции света

Галилей в 1583 году в итальянском городе Пиза провел первые наблюдения за особенностями свободного падения тяжелых и легких шаров одинакового диаметра. При этом он установил, что все эти шары достигали поверхности земли практически одновременно.

Пизанская башня

Пизанская башня высотой 58 м начала строиться в 1173 году и должна была увековечить славу города. Это сооружение, уже слегка наклоненное и поэтому прозванное «падающей» башней, было достроено в 1360 году. Законы, открытые Галилеем, и знаменитая башня прославили город Пизу на весь мир.

Законы свободного падения

Проделав многочисленные опыты с телами различного объема и формы, Галилей пришел к выводу, что в безвоздушном пространстве (в вакууме) все тела падают одинаково.

В вакууме все тела падают с одинаковым ускорением

Значение открытого Галилеем закона велико. Он выражает одно из важнейших свойств материи, позволяет понять и объяснить многие особенности строения нашей Вселенной. Вместе с тем идеи Галилея легли в основу ньютоновской механики.

Доказательство законов Галилея о свободном падении тел — опыты Ньютона

Галилей не мог проверить свои предположения, потому что в XVII веке осуществить падение тел в безвоздушном пространстве было невозможно из-за отсутствия воздушных насосов. Исследования, проведенные лишь 80 лет спустя И. Ньютоном, подтвердили правильность гипотезы Галилей. Гипотеза перестала быть гипотезой.

Суть опытов Ньютона заключается в следующем: в стеклянную трубку, длинной 1 м помещают различные предметы — кусочек свинца, пробку, перо. Если перевернуть трубку так, чтобы эти предметы могли падать, то раньше всех упадет кусочек свинца, за ним — пробка, и, наконец, плавно опустится перо. Если же откачать из трубки воздух, то при повторении опыта эти же тела будут падать совершенно одинаково.

Падение тел при отсутствии сопротивления среды называется свободным падением.

Ускорение свободного падения.

Ускорение свободного падения принято обозначать буквой . Вектор ускорения свободного падения всегда направлен вниз. При свободном падении все теля вблизи поверхности земли движутся равноускорено. Значит, свободное падение тел является примером равноускоренного движения. Если сделать ряд моментальных снимков падающего шарика через равные промежутки времени, то по расстояниям между последовательными положениями шарика можно определить, что движение действительно было равноускоренным. Измеряя эти промежутки, можно легко рассчитать и численное значение ускорения свободного падения.

Формулы свободного падения

Более точные измерения показывают, что ускорение свободного падения в различных точках поверхности земли несколько различаются. Так, в зависимости от географической широты местности, ускорение свободного падения изменяется следующим образом м/с 2 , м/с 2 , м/с 2 .

Как видно, величина ускорения свободного падения больше у полюса и уменьшается с приближением к экватору. При грубых расчетах используют приближенное значение ускорения свободного падения тел: м/с 2 , а иногда в условиях задач указывают значение, равное 10 м/с 2 .

Примеры решения задач

Тело находится на высоте . Определим, через какой промежуток времени оно упадет на землю и какую скорость будет иметь в момент падения. Начальная скорость равна нулю. Рассмотрим движение тела относительно Земли. Тело при падении будет двигаться с ускорением, направленным вниз, по вертикали прямолинейно и равноускорено, согласно закону . Длину пути будем отсчитывать от точки начала падения, а направление вниз будем считать положительным.

Время будем брать в расчет от момента начала падения. По условию задачи, если , то и . Тогда перемещение тела и его скорость определяем по формулам:

; .

И в момент падения тела на Землю .

Читайте также:
Закон преломления света формула и формулировка, физический смысл показателя преломления, принцип распространения лучей

Находим время и скорость в момент падения .

Все определения по физике за 9 класс основные понятия, термины, законы и формулы по термодинамике, динамике, механике, оптике, молекулярной физике

В пособии «Физика 9 класс. Все формулы и определения» представлено 45 формул :

Физика 9 класс. Все формулы и определения в разделе «КИНЕМАТИКА»

I. Равномерное прямолинейное движение

1. Скорость
2. Проекция скорости на координатную ось
3. Перемещение
4. Проекция перемещения на координатную ось

II. Равноускоренное прямолинейное движение

5. Средняя скорость при неравномерном прямолинейном движении
6. Ускорение
7. Скорость
8. Перемещение
9. Координата тела
10. Ускорение свободного падения

III. Равномерное движение по окружности

11. Угловая скорость
12. Частота обращения
13. Период обращения
14. Линейная скорость
15. Центростремительное ускорение

Физика 9 класс. Все формулы и определения в разделе «ДИНАМИКА»

IV Законы Ньютона

16. Первый закон Ньютона
17. Второй закон Ньютона
18. Третий закон Ньютона

V Силы в природе

19. Закон Гука
20. Закон всемирного тяготения
21. Гравитационная постоянная
22. Сила тяжести
23. Ускорение свободного падения
24. Вес покоящихся и движущихся тел.

VI. Движение тела под действием силы тяжести

25. Движение тела под углом к горизонту.
26. Горизонтально брошенное тело.
27. Скорость искусственного спутника Земли.

VII. Силы трения

28. Трение покоя.
29. Трение скольжения.
30. Коэффициент трения.
31. Движение тела под действием силы трения.

VIII. Движение тела под действием нескольких сил

32. Условие равновесия тела (как материальной точки)
33. Движение тела по наклонной плоскости.
34. Движение связанных тел через неподвижный блок.

IX. Законы сохранения в механике

36. Импульс тела
37. Импульс силы
38. Закон сохранения импульса
39. Механическая работа силы
40. Теорема о кинетической энергии
41. Потенциальная энергия поднятого тела
42. Работа силы тяжести
43. Потенциальная энергия деформированного тела
44. Закон сохранения полной механической энергии

X. Движение жидкостей и газов по трубам

45. Закон Бернулли

Дополнительные материалы

Девять самых необходимых (самых востребованных) формул по физике в 9 классе.

Таблицы физических величин

Вы смотрели «Физика 9 класс. Все формулы». Смотрите также справочные материалы по физике за другие классы:

2 Комментарии

спасибо, очень доходчиво и компактно, Удобно при подготовке к экзаменам!

формул в каждом классе не хватает (по две по три)

Добавить комментарий Отменить ответ

Конспекты по физике:
7 класс
  • Физические величины
  • Строение вещества
  • Механическое движение. Траектория
  • Прямолинейное равномерное движение
  • Неравномерное движение. Средняя скорость
  • ЗАДАЧИ на движение с решением
  • Масса тела. Плотность вещества
  • ЗАДАЧИ на плотность, массу и объем
  • Силы вокруг нас (силы тяжести, трения, упругости)
  • ЗАДАЧИ на силу тяжести и вес тела
  • Давление тел, жидкостей и газов
  • ЗАДАЧИ на давление твердых тел с решениями
  • ЗАДАЧИ на давление жидкостей с решениями
  • Закон Архимеда
  • Сообщающиеся сосуды. Шлюзы
  • ЗАДАЧИ на силу Архимеда с решениями
  • Механическая работа, мощность и КПД
  • ЗАДАЧИ на механическую работу с решениями
  • ЗАДАЧИ на механическую мощность
  • Простые механизмы. Блоки
  • Рычаг. Равновесие рычага. Момент силы
  • ЗАДАЧИ на простые механизмы с решениями
  • ЗАДАЧИ на КПД простых механизмов
  • Механическая энергия. Закон сохранения энергии
  • Физика 7: все формулы и определения
  • ЗАДАЧИ на Сообщающиеся сосуды
8 класс
  • Введение в оптику
  • Тепловое движение. Броуновское движение
  • Диффузия. Взаимодействие молекул
  • Тепловое равновесие. Температура. Шкала Цельсия
  • Внутренняя энергия
  • Виды теплопередачи: теплопроводность, конвекция, излучение
  • Количество теплоты. Удельная теплоёмкость
  • Уравнение теплового баланса
  • Испарение. Конденсация
  • Кипение. Удельная теплота парообразования
  • Влажность воздуха
  • Плавление и кристаллизация
  • Тепловые машины. ДВС. Удельная теплота сгорания топлива
  • Электризация тел
  • Два вида электрических зарядов. Взаимодействие зарядов
  • Закон сохранения электрического заряда
  • Электрическое поле. Проводники и диэлектрики
  • Постоянный электрический ток
  • Сила тока. Напряжение
  • Электрическое сопротивление
  • Закон Ома. Соединение проводников
  • Работа и мощность электрического тока
  • Закон Джоуля-Ленца и его применение
  • Электромагнитные явления
  • Колебательные и волновые явления
  • Физика 8: все формулы и определения
  • ЗАДАЧИ на количество теплоты с решениями
  • ЗАДАЧИ на сгорание топлива с решениями
  • ЗАДАЧИ на плавление и отвердевание
  • ЗАДАЧИ на парообразование и конденсацию
  • ЗАДАЧИ на КПД тепловых двигателей
  • ЗАДАЧИ на Закон Ома с решениями
  • ЗАДАЧИ на сопротивление проводников
  • ЗАДАЧИ на Последовательное соединение
  • ЗАДАЧИ на Параллельное соединение
  • ЗАДАЧИ на Работу электрического тока
  • ЗАДАЧИ на Мощность электрического тока
  • ЗАДАЧИ на Закон Джоуля-Ленца
  • Опыты Эрстеда. Магнитное поле. Электромагнит
  • Магнитное поле постоянного магнита
  • Действие магнитного поля на проводник с током
  • Электромагнитная индукция. Опыты Фарадея
  • Явления распространения света
  • Дисперсия света. Линза
  • Оптические приборы
  • Электромагнитные колебания и волны
9 класс
  • Введение в квантовую физику
  • Формула времени. Решение задач
  • ЗАДАЧИ на Прямолинейное равномерное движение
  • ЗАДАЧИ на Прямолинейное равноускоренное движение
  • ЗАДАЧИ на Свободное падение с решениями
  • ЗАДАЧИ на Законы Ньютона с решениями
  • ЗАДАЧИ закон всемирного тяготения
  • ЗАДАЧИ на Движение тела по окружности
  • ЗАДАЧИ на искусственные спутники Земли
  • ЗАДАЧИ на Закон сохранения импульса
  • ЗАДАЧИ на Механические колебания
  • ЗАДАЧИ на Механические волны
  • ЗАДАЧИ на Состав атома и ядерные реакции
  • ЗАДАЧИ на Электромагнитные волны
  • Физика 9 класс. Все формулы и определения
  • Относительность движения
  • Равномерное прямолинейное движение
  • Прямолинейное равноускоренное движение
  • Свободное падение
  • Скорость равномерного движения тела по окружности
  • Масса. Плотность вещества
  • Сила – векторная физическая величина
  • Первый закон Ньютона
  • Второй закон Ньютона. Третий закон Ньютона
  • Трение покоя и трение скольжения
  • Деформация тела
  • Всемирное тяготение. Сила тяжести
  • Импульс тела. Закон сохранения импульса
  • Механическая работа. Механическая мощность
  • Кинетическая и потенциальная энергия
  • Механическая энергия
  • Золотое правило механики
  • Давление твёрдого тела. Давление газа
  • Закон Паскаля. Гидравлический пресс
  • Закон Архимеда. Условие плавания тел
  • Механические колебания и волны. Звук
  • МКТ. Агрегатные состояния вещества
  • Радиоактивность. Излучения. Распад
  • Опыты Резерфорда. Планетарная модель атома
  • Состав атомного ядра. Изотопы
  • Ядерные реакции. Ядерный реактор
10-11 классы
  • Молекулярно-кинетическая теория
  • Кинематика. Теория и формулы + Шпаргалка
  • Динамика. Теория и формулы + Шпаргалка
  • Законы сохранения. Работа и мощность. Теория, Формулы, Шпаргалка
  • Статика и гидростатика. Теория и формулы + Шпаргалка
  • Термодинамика. Теория, формулы, схемы
  • Электростатика. Теория и формулы + Шпаргалка
  • Постоянный ток. Теория, формулы, схемы
  • Магнитное поле. Теория, формулы, схемы
  • Электромагнитная индукция
  • Закон сохранения импульса. Задачи ЕГЭ с решениями
  • Колебания и волны. Задачи ЕГЭ с решениями
  • Физика 10 класс. Все формулы и темы
  • Физика 11 класс. Все формулы и определения
  • Световые кванты
  • ЕГЭ Квантовая физика. Задачи с решениями
  • Излучения и спектры
  • Атомная физика (физика атома)
  • ЕГЭ Закон Кулона. ЗАДАЧИ с решениями
  • Электрическое поле. ЗАДАЧИ с решениями
  • Потенциал. Разность потенциалов. ЗАДАЧИ с решениями
  • Закон Ома. Соединение проводников. ЗАДАЧИ на ЕГЭ
  • Закон Ома для всей цепи. ЗАДАЧИ на ЕГЭ

Найти конспект:

О проекте

Сайт «УчительPRO» — некоммерческий школьный проект учеников, их родителей и учителей. Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie и других пользовательских данных в целях функционирования сайта, проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Читайте также:
Удельная теплота парообразования - обозначение, смысл

Возрастная категория: 12+

(с) 2021 Учитель.PRO — Копирование информации с сайта только при указании активной ссылки на сайт!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: