Транспирация – описание метаболизма растений и вывода влаги

Транспирация у растений – это важнейший процесс в физиологии растительного мира

Механизм транспирации

Транспирация – это процесс перемещения жидкости по растительному организму и ее испарения наземной частью растения. В транспирации участвуют листья, стебли, цветы, плоды, корневая система растительного организма.

Зачем растению нужно испарять влагу? Транспирация позволяет растению получать из грунта питательные вещества и микроэлементы, растворенные в воде.

Механизм действия следующий:

  1. Освобождаясь от лишней влаги, в водопроводящих тканях растений создается отрицательное давление.
  2. Разряжение «подтягивает» влагу из соседних клеток ксилемы, и так, по цепочке, непосредственно до всасывающих клеток корневой системы.

Благодаря процессу испарения растения естественным образом регулируют свою температуру, защищая себя от перегрева. Доказано, что температура транспирирующего листа ниже не испаряющего влагу. Разница достигает 7°С.

У растений различают две разновидности влагообмена:

  • посредством устьиц;
  • через кутикулы.

Чтобы понять принцип действия данного явления необходимо вспомнить строение листа из школьного курса биологии.

Лист растения состоит из:

  1. Клеток эпидермиса, которые образуют основной защитный слой.
  2. Кутикула – восковой (внешний) защитный слой.
  3. Мезофилл или «мякоть» – основная ткань, расположенная между внешними слоями эпидермиса.
  4. Прожилки – «транспортные магистрали» листа, по которым перемещается влага насыщенная питательными веществами.
  5. Устья – отверстия в эпидермисе, контролирующие газообмен растения.

При устьичной транспирации, процесс испарения происходит в две стадии:

  1. Переход влаги из жидкой фазы в парообразную. Вода в жидком состоянии находится в клеточных оболочках. Пар формируется в межклеточном пространстве.
  2. Выделение газообразной влаги в атмосферу через устья эпидермиса.

При устьичном влагообмене растение может регулировать уровень испарения. Далее рассмотрим механизм действия данного процесса.

Кутикулярная транспирация регулирует испарение влаги с поверхности листьев при закрытых устьях. Интенсивность испарения жидкости зависит от толщины кутикулы и возраста растения.

Важно знать, что уровень устичной транспирации составляет от 80 до 90 % от объема испарения всего листа. Именно поэтому такой механизм является основным регулятором интенсивности испарения у растений.

Лист как орган транспирации

Что такое транспирация мы разобрали. Теперь следует понять, какую роль в данном механизме играет лист.

Благодаря большой площади испарения, главными диффундирующими участками растения являются листья. Процесс испарения влаги начинается с нижней части листа через раскрытые устья, через которые и осуществляется обмен кислородом и углекислым газом между растением и окружающим воздухом.

Механизм раскрытия устьиц заключается в следующем:

  1. По окружности устий расположены замыкающие клетки.
  2. При увеличении объема они растягивают отверстия в эпидермисе, увеличивая раскрытие устьиц.

Обратный процесс происходит при уменьшении объема замыкающих клеток, стенки которых перестают воздействовать на устьичные щели.

Интенсивность транспирации

Интенсивность транспирации – это количество влаги, испаряемой с дм 2 растения за расчетную единицу времени. Данный параметр регулируется величиной раскрытия устьичных щелей, которая, в свою очередь, зависит от количества попадающего на растение света. Далее рассмотрим, как влияет свет на интенсивность транспирации.

Деформация клеток эпидермиса проходит под действием фотосинтеза, в процессе которого происходит преобразование крахмала в сахара.

  1. При свете у растений начинается процесс фотосинтеза. Давление в замыкающих клетках увеличивается, что дает возможность вытягивать воду из соседних клеток эпидермиса. Объем клеток увеличивается, устьица раскрываются.
  2. В вечернее и ночное время происходит преобразования сахаров в крахмал, в процессе которого клетки эпидермиса «откачивают» влагу из замыкающих клеток растения. Их объем уменьшается, устьица закрываются.

Помимо света на интенсивность транспирации оказывает влияние ветер и физические характеристики воздуха:

  1. Чем ниже уровень влажности атмосферного воздуха, тем быстрее происходит испарение воды, а значит и скорость влагообмена.
  2. При повышении температуры возрастает упругость водяных паров, которая приводит к снижению влажностных характеристик окружающей среды и увеличению объема испаряемой воды.
  3. Под влиянием ветра значительно увеличивается скорость испарение влаги, тем самым ускоряется перенос влажного воздуха с поверхности листа, вызывая усиление водообмена.

Для определения данного параметра не следует забывать и об уровне влажности почвы. Если ее недостаточно, значит и наблюдается ее недостаток в растении. Снижение объема влаги в растительном организме автоматически изменяет интенсивность испарения.

Читайте также:
Отдел моховидные - виды мхов и названия, размножение, факты

Суточный ход транспирации

В течение суток уровень испарения влаги у растений меняется:

  1. Ночью, процесс водообмена между растением и окружающим воздухом практически останавливается. Это обусловлено отсутствием солнца, закрытием отверстий эпидермиса, снижением температуры атмосферного воздуха и увеличением уровня его влажности.
  2. На рассвете, устья открываются. Степень их раскрытия увеличивается с изменением освещенности, климатических и физических показателей воздушных масс.
  3. Максимальная интенсивность транспирации у растений наблюдается в полдень, к 12-13 часам. На данный процесс влияет напряженность солнечного света.
  4. При недостаточной влажности в дневной период, интенсивность водообмена может снижаться. Этот механизм позволяет растению значительно сократить потерю влаги, защитив себя от увядания.
  5. При снижении солнечной инсоляции в вечерние часы интенсивность транспирации вновь возрастает.

Суточный процесс влагообмена также зависит от вида и возраста растений, региона произрастания, схемы расположения листьев.

У кактусов, повышение уровня транспирации происходит исключительно ночью, когда устья полностью раскрыты. У растений, листва которых повернута боковой частью к горизонту, данный процесс начинается непосредственно с первыми лучами солнечного света.

Транспирация у растений

Транспирация у растений

Всем известно, что вода играет определяющую роль в жизни растений. Нормальное развитие любого растительного организма возможно только в том случае, когда всё|все его органы|органы и ткани хорошо насыщены влагой. Однако система водообмена между растением и окружающей средой в действительности сложна и многокомпонентна.

  • Что такое транспирация
  • Какую роль выполняет транспирация в физиологии растений
  • Виды транспирации
  • Устьичная
  • Кутикулярная
  • Описание процесса транспирации
  • Факторы влияющие на процесс транспирации
  • Как происходит регулировка водного баланса

Что такое транспирация

Транспирация – это регулируемый физиологический процесс движения воды|воды по органам|органам растительного организма, завершающийся её потерей через испарение.

Знаете ли вы? Слово «транспирация» происходит от двух латинских слов: trans – через и spiro – дыхание, дышать, выдыхать. Дословно термин переводится как выделение пота, потение, испарина

. Чтобы понять, что такое транспирация на примитивном уровне, достаточно осознать, что жизненно необходимая для растения вода, извлечённая из земли|земли корневой системой, должна каким-то образом попасть к листьям, стеблям|стеблям и цветам.

В процессе этого движения большая|большая часть влаги теряется (испаряется), особенно при ярком свете, сухом воздухе, сильном ветре и высокой температуре.

Таким образом, под влиянием атмосферных факторов запасы воды|воды в надземных органах|органах растения постоянно расходуются и, следовательно, должны всё время пополняться за счёт новых поступлений. По мере испарения воды|воды в клетках растения возникает некая сосущая сила, которая «подтягивает» воду из соседних клеток и так по цепочке – до самых корней. Таким образом, главный «двигатель» тока|тока воды|воды от корней к листьям находится именно в верхних частях растений, которые, говоря упрощённо, работают как маленькие насосы. Если вникнуть в процесс чуть глубже, то водный обмен в жизни растений представляет собой следующую цепочку: вытягивание воды|воды из почвы корнями, подъем|подъём её к надземным органам|органам, испарение. Эти три процесса находятся в постоянном взаимодействии. В клетках корневой системы растения образуется так называемое осмотическое давление, под воздействием которого находящаяся в почве вода активно всасывается корнями.

Когда в результате появления большого количества листьев и повышения температуры окружающей среды|среды вода как бы начинает высасываться из растения самой|самой атмосферой, в сосудах растений возникает дефицит давления, передающийся вниз, к корням, и подталкивающий их к новой «работе». Как видим, корневая система растения тянет воду из почвы под воздействием двух сил – собственной, активной и пассивной, передающейся сверху, которая и вызывается транспирацией.

Какую роль выполняет транспирация в физиологии растений

Процесс транспирации играет огромную роль в жизни растений.

Прежде всего, следует понимать, что именно транспирация обеспечивает растениям защиту от перегрева. Если в яркий солнечный день мы измерим|измерим у одного и того же растения температуру здорового и увядшего листа, разница может составлять до семи градусов, причём если увядший лист на солнце может оказаться горячее|горячее, чем окружающий воздух, то температура транспирирующего листа обычно бывает на несколько градусов ниже! Это говорит о том, что проходящие в здоровом листе процессы транспирации позволяют ему самостоятельно охлаждать себя, в противном случае лист перегревается и погибает.

Важно! Транспирация является гарантом важнейшего процесса в жизнедеятельности растения – фотосинтеза, который лучше всего происходит при температуре от 20 до 25 градусов тепла. При сильном повышении температуры, в связи с разрушением хлоропластов в клетках растения, фотосинтез сильно затрудняется, поэтому не допускать подобного перегрева для растения жизненно важно.

Кроме того, движение воды|воды от корней к листьям растения, непрерывность которого обеспечивает транспирация, как бы соединяет всё|все органы|органы в единый организм, и чем сильнее транспирация, тем активнее развивается растение.

Значение транспирации состоит и в том, что у растений основные питательные вещества могут проникнуть в ткани именно с водой, поэтому чем выше продуктивность транспирации, тем быстрее надземные части растений получают растворенные|растворённые в воде минеральные и органические соединения.

Наконец, транспирация является той удивительной силой, которая может заставить воду подняться внутри растения по всей его высоте, что имеет огромное значение, например, для высокорослых деревьев, верхние листочки которых благодаря рассматриваемому процессу могут получать необходимое количество влаги и питательных веществ.

Виды транспирации

Существует два вида транспирации – устьичная и кутикулярная. Для того чтобы разобраться в том, что представляет собой тот и другой виды, вспомним из уроков ботаники строение листа, так как именно этот орган|орган растения является основным в процессе транспирации.

Итак, лист состоит из следующих тканей:

Устьичная

Сначала вода начинает испаряться с поверхности основной ткани клеток. В результате эти клетки теряют влагу, водные мениски в капиллярах вгибаются вовнутрь, поверхностное натяжение увеличивается, и дальнейший процесс испарения воды|воды затрудняется, что позволяет растению значительно экономить воду. Затем испарившаяся вода через устьичные щели выходит наружу. Пока устьица открыты, вода испаряется с листа с такой же скоростью, что и с водной поверхности, то есть диффузия через устьица очень высокая.

Дело в том, что при одной и той же площади вода быстрее испаряется через несколько небольших отверстий, расположенных на некотором расстоянии, чем через одно крупное. Даже после того как устьица закрываются наполовину, интенсивность транспирации остаётся почти такой же высокой. Но когда устьица закрываются, транспирация уменьшается в несколько раз.

Количество устьиц и их расположение у различных растений неодинаково, у одних видов они находятся только на внутренней стороне листа, у других – и сверху и снизу, однако, как видно из вышесказанного, не столько количество устьиц влияет на интенсивность испарения, сколько степень их открытости: если воды|воды в клетке много, устьице открывается, когда возникает дефицит – происходит выпрямление замыкающих клеток, ширина устьичной щели уменьшается – и устьице закрывается.

Кутикулярная

Кутикула, так же как и устьица, обладает способностью реагировать на степень насыщенности листа водой. Находящиеся на поверхности листа волоски защищают лист от движений воздуха и солнечных лучей, что позволяет сократить потери воды|воды. Когда устьица закрыты, кутикулярная транспирация особенно важна. Интенсивность этого вида транспирации зависит от толщины|толщины кутикулы (чем толще слой, тем меньше испарение). Большое значение имеет и возраст растения – на зрелых листьях водопотери составляют всего 10 % от всего процесса транспирации, в то время как на молодых могут доходить до половины. Впрочем, увеличение кутикулярной транспирации наблюдается и на слишком старых листьях, если их защитный слой повреждается от возраста, рассыхается или растрескивается.

Описание процесса транспирации

На процесс транспирации существенное влияние оказывают несколько значимых факторов.

Факторы влияющие на процесс транспирации

Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.

Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды|воды попадает|попадает в растение, тем больше её дефицит и, соответственно, меньше транспирация.

При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это всё|все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.

Знаете ли вы? Чем больше хлорофилла в растении, тем сильнее свет влияет на процессы транспирации. Зелёные растения начинают испарять влагу почти в два раза больше даже при рассеянном свете.

Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды|воды.

Видео по теме : Транспирация у растений

Транспирация – определение, функции и примеры

Определение Транспирации

Транспирация – это испарение воды с растений. Большая часть воды поглощается корнями растение – до 99,5% – не используется для роста или обмена веществ; это лишняя вода, и она покидает растение через транспирацию. Транспирация очень важна для поддержания условий влажности в окружающей среде. Целых 10 процентов влаги в атмосфере Земли происходит от транспирации воды растениями.

Функция Транспирации

Транспирация происходит потому, что растения потребляют больше воды, чем им нужно в данный момент времени. Это способ избавиться от лишней воды. Когда вода удаляется с завода, она может легче получить доступ к углекислому газу, в котором она нуждается фотосинтез, Кроме того, растения могут использовать транспирацию как метод охлаждения.

Транспирация используется для описания специфического действия воды, испаряющейся из растения, но слово транспирация также используется для описания того, как вода движется через растения. Когда вода проникает в растение через корни, она вытягивается через ксилема ткань в стволе растения к листьям растения за счет капиллярного действия и сплоченности молекул воды. Когда вода достигает устьиц, которые представляют собой небольшие отверстия в листьях, она испаряется из-за диффузия ; содержание влаги в воздухе ниже, чем влага в лист Таким образом, вода естественным образом вытекает в окружающий воздух для выравнивания концентраций.

Транспирация имеет побочные эффекты для других организмов в экосистема, Это помогает поддерживать определенный уровень влажности в окружающей среде, в зависимости от количества и типов растений в окружающей среде. Это непреднамеренно позволяет некоторым организмам выживать лучше, чем другие, в зависимости от уровня влажности, который им необходим для процветания.

Примеры Транспирации

Стоматальное Транспирация

Стоматальная транспирация – это испарение воды из устьиц растения. Большая часть воды, которая поступает из растения, транспортируется таким образом; по крайней мере 90% воды, поступающей из листьев растения, выходит через устьица. Вблизи поверхности листа вода в жидкой форме превращается в водяной пар и испаряется из растения через открытые устьица.

Кутикулярное дыхание

Кутикулярная транспирация – это испарение воды из кутикулы растения. Кутикула представляет собой восковую пленку, которая покрывает поверхность листьев растения. Эта форма транспирации не приводит к значительной потере воды растением; около 5-10 процентов воды листьев теряется через кутикулу. Когда растения закрывают свои устьицы в сухих условиях, таким образом поступает больше воды.

Лентикулярное Транспирация

Лентикулярная транспирация – это испарение воды из чечевицы растения. Чечевица – это небольшие отверстия в коре веток и веточек. Не все растения имеют чечевицу. Количество воды, потерянной таким образом, очень мало по сравнению со сториальной транспирацией, но, как и при кутикулярной транспирации, оно может увеличиться, если растение находится в сухой среде.

Факторы, которые влияют на транспирацию

Есть много факторов, которые влияют на транспирацию. Одним из таких факторов является температура. Когда температура повышается, устья листьев открываются, и появляется больше воды. Растения, растущие в более теплом климате, вырастают больше. Уровни влажности воздуха и почвы являются другими важными факторами. Когда относительная влажность воздуха увеличивается, в воздухе появляется больше влаги, поэтому транспирация уменьшается. Однако, если в почве будет больше влаги, растения будут выделяться больше, потому что они потребляют больше воды. Больше ветра также увеличивает скорость транспирации, потому что это уменьшает относительную влажность вокруг растения. Конечно, некоторые растения также просто прозрачнее, чем другие. Растения, которые живут в сухих условиях, таких как кактусы, эволюционировали, чтобы частично экономить воду, транспортируя меньше воды. Это позволяет им процветать в засушливых регионах, таких как пустыня.

Водный цикл

Транспирация является частью круговорот воды также известный как гидрологический цикл. круговорот воды описывает, как вода движется по всей Земле. Во-первых, вода вытекает из растений и попадает в атмосферу в виде водяного пара. Вода из земных океанов, озер и рек также испаряется в атмосферу. Испарение с водных путей Земли и растений через транспирацию в совокупности известно как суммарное испарение. В атмосфере вода образует облака, а затем снова падает на землю в виде дождя или снега. Осадки снова накапливаются в земных водных путях или попадают в почву, где они позволяют растениям расти. Затем вода испаряется из растений, океанов, озер и рек, завершая цикл.

Эта диаграмма показывает круговорот воды на Земле.

  • Устьица – Маленькие отверстия на дне листьев растений, которые используются для газообмена.
  • ксилема – Ткань в растениях, которая транспортирует воду и некоторые питательные вещества от корней растения до остальной части растения.
  • Чечевички – Небольшая пора в коре растения.
  • Эвапотранспирация – испарение воды из океанов, рек и озер, а также из растений посредством транспирации.

викторина

1. Какой тип транспирации НЕ является?A. Лентикулярная транспирацияB. Мезархальная транспирацияC. Кутикулярная транспирацияD. Стоматальная транспирация

Ответ на вопрос № 1

В верно. Лентикулярная, кутикулярная и устная транспирация – это формы транспирации, при которых вода теряется через линзу, кутикулу и устьицу соответственно. Мезархальная транспирация не существует. Месарх описывает путь развития ксилемы.

2. Когда температура повышается, что происходит со скоростью транспирации?A. Транспирация увеличивается.B. Транспирация уменьшается.C. Транспирация остается с той же скоростью.

Ответ на вопрос № 2

верно. Когда температура увеличивается, транспирация также увеличивается. Растения больше открывают свои устьицы в горячих средах, так что вода может испаряться, что охлаждает растение. Поэтому растения в горячих средах обычно переносят больше, чем растения в более холодных средах.

3. Когда _____________ увеличивается, скорость транспирации уменьшается.A. ветерB. Влага в почвеC. Влага в воздухеD. температура

Ответ на вопрос № 3

С верно. Когда относительная влажность высокая, транспирация уменьшается. Меньше воды испаряется в окружающий воздух, если в воздухе больше влаги. Когда влажность низкая, а воздух сухой, транспирация увеличивается. Вода проникает в воздух через диффузию; он перемещается из области с более высокой концентрацией (лист) в область с более низкой концентрацией (воздух).

Транспирация у растений и ее биологическое значение

Транспирация у растений и ее биологическое значение

Растения обладают своеобразной «кровеносной системой», позволяющей обеспечивать их всеми необходимыми для развития веществами. Ее венец – освобождение от воды через листья и стебли, которое биологи назвали «транспирация».

Транспирация – что это такое

Если говорить об этом понятии подробнее, то транспирация – не что иное, как испарение в атмосферу влаги из листьев и стеблей живых растений. Это явление помогает воде, которую всасывает корневая система, иногда из достаточно глубоких слоев грунта (в пустынях корни могут уходить вглубь даже на двадцать метров), подниматься по стеблям или стволам к листьям, цветам, плодам, доставляя ко всем частям растительного организма нужные минералы и элементы. И новая порция воды с питательными веществами «подсасывается» благодаря транспирации у растений: место освобождается испарением использованной влаги через мелкие поры на листьях, расположенные с тыльной стороны. Интенсивность движения воды зависит от внешних факторов – времени суток, температуры и влажности воздуха. Другими словами, растение транспирирует, когда влажность воздуха внутри него выше влажности окружающей атмосферы. Доказано, что десять процентов всей влаги, которая испаряется на поверхности Земли, относится на счет именно растительного мира нашей планеты.

Биологическое значение транспирации

Перефразируя известное выражение, можно сказать: если какое-то явление существует, значит, оно для чего-то нужно. Справедливо это и по отношению к транспирации. Для растений она имеет жизненно важное значение, и считать ее губительной для мира флоры неверно.

  1. Процесс транспирации обеспечивает постоянное движение воды «от пят до макушки» – через корни, стебли, листья.
  2. Таким образом удается регулировать температурный и водный режимы. В самое жаркое время летнего дня листья обычно прохладнее окружающей атмосферы на три – восемь градусов.
  3. Испарение помогает разгрузить растение от излишка влаги внутри и дать место новой партии воды, полной питательными микроэлементами.
  4. Транспирация предотвращает перегревание и ожоги листьев при высокой температуре или попадании прямых лучей солнца.
Но если воды уходит больше, чем растение успевает «выпить» из земли корнями, ему грозит опасность:
  • дефицит влаги;
  • приостановка роста;
  • уменьшение интенсивности фотосинтеза;
  • нарушение обмена веществ внутри растительного организма.

Итогом может стать не просто увядание, но даже гибель. И все-таки, если условия не экстремальны, растение способно самостоятельно регулировать уровень испарения. Если воды к поверхности, откуда она испаряется, приходит недостаточно, транспирация замедляется.

Процессы передвижения воды

Как мы уже выяснили, транспирация – естественный физиологический процесс в растительном мире. Главный ее орган – лист. Поскольку листьев у растений много, они образуют достаточно большую площадь для испарения. В результате водный потенциал уменьшается, а это сигнал для клеток листьев к поглощению воды из ксилемных жилок. По принципу падающего домино следом провоцируется движение воды из корней по ксилеме к листьям. Образуется нечто сродни верхнему конечному двигателю. И чем активнее транспирация, тем мощнее верхний «двигатель», и тем сильнее всасывающая сила «двигателя» нижнего – корневой системы.

Из стебля вода движется в листок, проходя по жилкам через черешок. По дороге жилки «разбегаются», число проводящих элементов становится меньше. Сами жилки превращаются в отдельные трахеиды, которые образуют очень густую сеть. Задерживают влагу в листе однослойный эпидермис с кутикулой на его поверхности. Превратившаяся в пар вода выходит сквозь устьица – специальные многочисленные отверстия микронных размеров, которые растение в состоянии расширять или сужать в зависимости от внешних условий.

Механизм и интенсивность транспирации

Растения поглощают лишь незначительную часть всего объема воды, который добывают из грунта – 0,2 процента, иногда немного больше. Все остальное испаряется в воздух. Механизм работы верхнего конечного двигателя достаточно прост. Основан он на том, что обычно в атмосфере маловато водяных паров, а значит, ее водный потенциал можно охарактеризовать как негативный. Например, при относительной влажности воздуха в 90 процентов атмосферное давление равняется 140 барам. А у подавляющего большинства представителей царства флоры давление внутри листа варьируется между 1 и 30 барами. Такой большой разрыв и обеспечивает транспирацию. Водный дефицит, спускаясь по клеткам от листьев по стеблям, неминуемо достигает корней. Это вынуждает нижний двигатель «запускаться», всасывая воду из грунта. А испарение с поверхности листьев поднимает ее, вместе со всеми минеральными солями, обратно наверх.

Есть несколько факторов, влияющих на интенсивность транспирации.
  1. «Наполненность» растения водой. Когда она достигает критического уровня, устьица сужаются.
  2. Насыщенность воздуха углекислым газом. Большинство растений на чрезмерную его концентрацию отвечают закрытием устьиц.
  3. Освещение. Обычно когда светло, устьица открыты. Темнеет – закрываются.
  4. Температура воздуха. Переваливая за 35-40°С, она провоцирует закрытие устьиц.
  5. Температура поверхности самого листа. Нагреваясь на каждые 10°С, лист отдает вдвое больше влаги.
  6. Влажность воздуха и скорость ветра. Чем суше атмосфера, тем выше транспирация.

Транспирация: виды

Испарение воды растениями проходит в три фазы:
  1. Продвижение из жилок в верхние слои мезофилла.
  2. Испарение из стенок клетки в межклеточные промежутки и пустоты вокруг устьиц; последующий выход наружу.
  3. Последний этап подразделяется на:
  • транспирацию через устьица – устьютную;
  • испарение в атмосферу непосредственно через клетки эпидермиса – кутикулярную транспирацию.

Устьютная

Ее можно разбить на две стадии.
  1. Переход воды из капельного состояния (в таком виде она пребывает в клеточных оболочках) в газообразное в межклеточных промежутках. В это время растение способно регулировать силу транспирации. Если воды ему не хватает, в корневых и стеблевых сосудах возникает сильное напряжение, задерживающее продвижение воды к клеткам листьев. И испарение замедляется.
  2. Выделение пара на поверхность через устьица. Как только водяной пар выходит из межклеточных пустот, они снова заполняются за счет перемещения из оболочек клеток. Основной рычаг координирования транспирации – это степень открытости устьиц.

Кутикулярная

Транспирация, которую биологи назвали кутикулярной, у разных видов растений очень отличается по своей интенсивности. У одних потеря влаги за ее счет совсем незначительна. Например, семействам магнолиевых и хвойных толстый эпидермис и кутикула поверх него на листьях не дают терять много жидкости. У других транспортируемая таким образом вода может составлять до 50 процентов общего объема. Особенно силен процесс, когда листья еще молоденькие, с очень тонким эпидермисом и кутикулой.

Суточный ход и показатели транспирации

На протяжении суток растения «дышат» с разной силой.
  1. Если на улице ясно и не очень сухо, первый глубокий «вдох» они делают на рассвете, когда устьица открываются на максимальную ширину. Во второй половине дня они понемногу сужаются и закрываются, когда садится солнце.
  2. В сухую погоду это происходит намного раньше – уже к десяти-одиннадцати часам. Как только к вечеру зной спадает, они опять открываются до заката.
  3. Когда небо затянуто облаками, устьица обычно открыты до вечера, но не очень широко.

Суточные колебания потери воды сопоставимы с движением устьиц. Транспирация несколько опережает поступление влаги, которая не может с такой же скоростью проходить по клеткам растения. Поэтому в дневное время образуется определенный дефицит. Зато ночью, когда устьица закрыты и «спят», он восполняется. Но во многом ситуация зависит от региона, где растение живет, и его вида. Так, у кактусовых и молочайных устьица открываются исключительно по ночам.

В умеренном климате для накопления одного грамма сухих веществ растения задействуют около 300 граммов воды. В общем, данный показатель может колебаться от 125 до 1000 граммов.

Транспирация и ее регулирование растением

В основе транспирации лежит физиологический процесс испарения, происходящий в результате контактов наземных органов растения с не насыщенной водой атмосферой.

Присасывающая сила транспирации является верхним концевым двигателем водного тока, обеспечивающим транспорт воды и растворенных в ней минеральных и органических веществ. Верхний двигатель является более мощным, чем корневое давление, и использует даровую для растения энергию — энергию Солнца. Этим он выгодно отличается от корневого давления, использующего энергию дыхания растений. Концевые двигатели взаимосвязаны и обеспечивают непрерывный восходящий ток воды по сосудам ксилемы к испаряющим поверхностям клеток листа.

Значение транспирации заключается и в том, что испарение воды понижает температуру листа и защищает его от перегрева. За счет транспирации создается некоторая недонасыщенность клеток водой, что обеспечивает оптимальные условия для процессов жизнедеятельности, плодоношения и созревания плодов.

Одной из важнейших характеристик процесса является интенсивность транспирации — количество воды, испаряемое растением с единицы листовой поверхности в единицу времени. Для сельскохозяйственных растений умеренной зоны интенсивность транспирации составляет днем 150—2500 мг/(дм 2 -ч), ночью — 10—200 мг/(дм 2 -ч).

На транспирацию оказывает большое влияние степень насыщенности воздуха парами воды. Чем ниже влажность воздуха, тем интенсивнее идет транспирация. Температура воздуха, окружающего растение, также влияет на транспирацию. С повышением температуры воздуха транспирация увеличивается, так как при этом увеличивается скорость диффузии водяного пара. Ветер также усиливает транспирацию, унося влажные слои воздуха от поверхности листа.

С самого начала существования наземных растений возникла дилемма: фотосинтез требует интенсивного поступления С02, а предотвращение значительной потери воды возможно только при наличии хорошей изоляции от окружающего воздуха.

Ряд особенностей строения листа позволяет решать эту проблему. Лист растения с верхней и нижней сторон покрыт эпидермисом, наружная стенка которого имеет кутикулу, состоящую из чередующихся слоев кутина и воска. Кутикулярная защита от излишней потери воды весьма эффективна. У взрослых листьев кутикулярная транспирация составляет 10—20 % общего испарения воды. В эпидермисе имеются отверстия — устьица, ограниченные двумя замыкающими клетками. У большинства сельскохозяйственных культур устьица в основном расположены с нижней стороны листа, что снижает потери воды. Обычно устьица занимают 1—3 % поверхности листа.

Степень раскрытия устьиц зависит от освещенности, оводненности тканей листа, концентрации С02 в межклетниках и других факторов. В зависимости от факторов, запускающих двигательный механизм (свет или начинающийся водный дефицит в тканях листа), различают фото- и гидроактивное движение устьиц. Согласно современным представлениям открывание устьиц на свету вызывается включением протонной помпы в плазмалемме замыкающих клеток. Выход протонов сопровождается поступлением К+ и С

в вакуоли замыкающих клеток, гидролизом крахмала и образованием малата (аниона яблочной кислоты). Увеличение в вакуолях замыкающих клеток содержания осмотически активных веществ (К+, С

и малата) приводит к усилению поступления воды в вакуоль, повышению тургора и открыванию устьиц. Рассмотренные процессы могут быть представлены в виде следующей схемы:

Последовательность событий при закрывании устьиц носит обратный характер. При недостатке воды ингибируется деятельность протонной помпы и устьица закрываются.

Таким образом, устьица очень чутко реагируют на внешние условия и физиологические изменения в тканях листа. В результате интенсивность транспирации приспосабливается к складывающимся условиям. В умеренно влажные и не слишком жаркие дни расход воды на транспирацию хорошо согласован с поступлением воды, оводненность тканей довольно постоянна, т. е. складывается благоприятный водный баланс растения. В этом случае устъичное движение следует за изменением солнечной инсоляции, кривая транспирации (рис. 1.24, Б) в течение дня подобна кривой испарения со свободной водной поверхности (рис. 1.24, А). В жаркие летние дни корни не успевают покрывать расход воды на возрастающую транспирацию, что приводит к водному дефициту в растении. Полуденный водный дефицит и временное завядание не причиняют растению особого вреда. Их значительному увеличению препятствует способность растения к частичному (рис. 1.24, Б) или полному (рис. 1.24, Г) гидроактивному закрыванию устьиц и снижению транспирации. К вечеру водный дефицит снижается, а в ночные часы за счет активной деятельности корневой системы водный баланс полностью восстанавливается. Во время летней засухи устьица ненадолго открываются лишь в утренние часы и идет только кутикулярная транспирация (рис. 1.24, Д).

В условиях засухи, когда в почве почти не остается доступной для растения влаги, водный баланс за ночь не восстанавливается, наблюдается длительное увядание растения. Такой не покрываемый к утру водный дефицит получил название остаточного водного дефицита. При этом завядающие листья оттягивают воду от молодых растущих частей и формирующихся плодов, что приостанавливает ростовые процессы и снижает продуктивность растений.

Рис. 1.24. Дневной ход транспирации при различной влагообеспеченности растений:

А — испарение со свободной водной поверхности; Б — транспирация при достаточной влагообеспеченности; В — при недостатке влаги в полдень; Г — при глубоком водном дефиците; Д — во время длительной засухи

Урок Бесплатно Дыхание растений. Передвижение и испарение воды в растениях

Дыхание растений

Растения состоят из одной или множества клеток.

Дыхание – такой же признак, характерный для живых организмов, как и рост, размножение.

Даже одноклеточные растения, такие как водоросль хлорелла, дышат, хотя и живут в воде.

Зачем растениям нужен кислород?

О том, что растения являются главным источником кислорода (О2), знают даже ученики младших классов.

Из-за этого и возникает путаница.

Многие ошибочно считают, что раз растения внешне не похожи на животных, значит дыхание у них происходит «в обратную сторону».

Часто люди думают, что растительные клетки выделяют кислород и поглощают углекислый газ (СО2) и таким образом дышат.

Мы развеем эти заблуждения.

Но для начала зададим вопрос: “Почему ученые не советуют ставить большие растения в спальне?”

Почему у людей, которые не слушались этого совета, утром болела голова и они себя чувствовали, мягко говоря, не очень хорошо?

Исследователи выяснили причину этого странного явления.

Оказывается, что растения, так же, как и люди, поглощают кислород и выделяют углекислый газ.

За счет этого они получают энергию.

Человек, который ночью спал в комнате с растениями, не получал достаточно кислорода и буквально травился углекислым газом, выделенным растением.

Схематично молекулу углекислого газа (СО2) можно представить так:

Запомните и никогда не путайте:

Дыхание – это процесс поглощение кислорода, а фотосинтез – его выделение растительными клетками.

Отличие дыхания от фотосинтеза:

свойственно всем клеткам

характерно только для растений

углекислый газ выделяется

углекислый газ поглощается

образуются сложные химические вещества

Влияние внешних факторов на процесс дыхания растений

  • увеличение содержания кислорода в воздухе до 8–10 % сопровождается повышением интенсивности дыхания у растений, но дальнейшее увеличение концентрации кислорода не влияет существенно на дыхание
  • в атмосфере чистого кислорода (без примесей азота и углекислого газа) интенсивность дыхания растений снижается. При длительном его действии растение погибает
  • при высоком содержании углекислого газа в воздухе дыхание растений замедляется, так как устьица закрываются
  • дыхание некоторых растений идет и при температуре ниже 0 о С (например, ель дышит при -25 о С)
  • активность дыхания, возрастает при повышении температуры до определенного предела (+35- 40 о С)
  • повышение содержания воды в семенах приводит к резкому увеличению интенсивности дыхания
  • такие элементы, как сера, железо, медь, марганец, необходимы для дыхания, поэтому дыхание активируется при их высоком содержании (например, в воде)
  • механическое повреждение усиливает дыхание
  • интенсивность дыхания корней, как и листьев, по мере старения растений снижается

Откуда берется энергия у растений?

Когда вы учили строение клетки, то узнали о такой органелле, как митохондрия.

На рисунке она похожа на фасолинку, хотя встречаются и другие ее формы.

Это очень странная часть клетки.

Некоторые ученые считают, что она образовалась из какого-то микроорганизма, который проник в клетку-хозяина и потом потерял большую часть своих способностей.

Правда, митохондрии сохранили способность двигаться и даже могут сливаться друг с другом!

Эта органелла стала просто незаменимой для клеток.

Ведь она выполняет одну из главных задач – образует молекулу АТФ (Аденозин-Три-Фосфорная кислота).

Когда от АТФ отщепляется один из трех фосфатов, то выделяется 40 000 Джоулей энергии.

Чтобы было понятнее – столько энергии нужно, чтобы нагреть примерно половину стакана льда до состояния кипятка.

И это только один фосфат отщепляется, а если три?

Представляете, сколько энергии в одной молекуле?

Присоединяя фосфаты, АТФ запасает энергию и постепенно отдает ее.

«А при чем здесь кислород?» – спросите вы.

Кислород участвует в сложном процессе образования АТФ с помощью глюкозы внутри митохондрии. Это называется внутриклеточным дыханием.

И в результате всех этих химических реакций образуется углекислый газ и вода, так же, как и при горении.

Следовательно, горение похоже на дыхание.

Есть лишь небольшая разница: при горении в результате реакции кислорода с молекулами других веществ, энергия высвобождается мгновенно.

Опыты, доказывающие дыхание растений

Опыт №1 Образование углекислого газа при дыхании

Возьмем веточку растения, поставим ее в стакан с водой; рядом поставим другой стакан с прозрачной известковой водой, закроем всё стеклянным колпаком и поместим в темное место, чтобы приостановился процесс выделения кислорода.

Примерно через сутки мы увидим, что стакан с известковой водой помутнел, эта реакция известковой воды на углекислый газ.

Откуда в закрытом колпаке образовался углекислый газ?

Делаем вывод: растение выделило углекислый газ в ходе дыхания.

Таким образом, мы видим, что растение активно дышит, забирая из воздуха кислород и выделяя углекислый газ.

Но не забывайте, что дыхание растений идет непрерывно и днем, и ночью, как у человека и животных.

Опыт №2 Необходимость воздуха для дыхания корней

Взяли два растения и поместили их в сосуды с водой, на поверхность воды налили масло (слой масла задерживает поступление воздуха в воду).

Воду в одном из сосудов ежедневно насыщаем воздухом из пульверизатора, растение в этом сосуде активно развивается.

А другое растение начинает гибнуть из-за недостатка воздуха, который необходим корням растения.

Вывод: корни растения дышат, без дыхания корней все растение может погибнуть.

Опыт № 3 Дыхание семян

В одну банку положим проросшие семена, в другую банку положим сухие семена.

Закроем плотно обе банки и поставим в темное теплое место.

На следующий день проверим состав воздуха.

Вы знаете, что для горения необходим кислород.

Опустим в бутылку с сухими семенами зажженную свечку – она хорошо и непрерывно горит, то есть воздух в банке остался неизменным, так как непрорастающие семена дышат очень слабо.

А если поместим свечку в банку с прорастающими семенами, свечка сразу потухнет, потому что прорастающие семена активно израсходуют кислород в ходе дыхания и выделят большое количество углекислого газа, а раз нет кислорода – горение свечи происходить не может, так как для горения нужен кислород.

Опыт доказывает, что проросшие семена активно дышат, поглощая кислород и выделяя углекислый газ.

Вывод: дыхание растениям необходимо для получения энергии, которая тратится на различные процессы жизнедеятельности (рост, размножение, питание и другие процессы)

Дыхание во всех живых клетках и органов растения происходит непрерывно.

Как и животные, растения погибают с прекращением дыхания.

Пройти тест и получить оценку можно после входа или регистрации

Транспирация — суть процесса, схема, скорость и значение в жизни растений

  1. Что такое транспирация?
  2. Процесс транспирации
  3. Скорость транспирации
  4. Устьица
  5. Условия окружающей среды: свет, температура, вода, ветер, влажность
  6. Подведение итогов

Вы знали, что растения потеют? Транспирация – это одновременно важный и трудоемкий процесс для растений, требующий поддержания тонкого баланса между ним и другими жизненно необходимыми клеточными процессами.

Что такое транспирация?

Представьте себя жарким летним днем. Когда вы испытываете жажду, вы пьете воду для регидратации. Но куда девается эта вода? Часть ее идет на важные процессы в организме, но в жаркий день вы, вероятно, потеете. Потоотделение или охлаждение испарением – это то, как ваше тело предотвращает перегревание. Вода выходит через потовые железы и испаряется в воздух, в результате чего температура кожи снижается.

Растения тоже «потеют», но этот процесс называется транспирацией. С помощью корневой системы они забирают из почвы воду и питательные вещества. Вода движется через тела растений и используют для клеточных процессов, но большая ее часть (около 99,5%) испаряется в атмосферу наружными органами растений (листья, стебли и цветки).

Процесс транспирации

Подобно потовым железам на коже, у растений на листьях есть отверстия, через которые выходит вода, называемые устьицами. Устьица обычно находятся на нижней стороне листа, чтобы не допустить лишнюю потерю воды, и они окружены замыкающими клетками, которые открывают и закрывают поры.

Хотя устьица выделяют воду, их основное предназначение – обмен газов. Растения должны «дышать» углекислым газом из атмосферы, чтобы фотосинтезировать или превращать солнечный свет в полезную химическую энергию. Им также необходимо выпускать кислород обратно в атмосферу в качестве побочного продукта фотосинтеза. Этот газообмен происходит через устьица, и в это время растение теряет часть воды.

Скорость транспирации

На скорость транспирации растений влияет ряд факторов, и самая сложная часть – это регулирование количества потери воды при одновременном обмене необходимым количеством газа через устьица. Растения естественным образом испаряются с разной скоростью, но есть некоторые факторы, которые могут повлиять на скорость потери воды для всех растений.

Устьица

Устьица могут влиять на скорость транспирации, просто контролируя, насколько они открыты или закрыты, через замыкающие клетки. Более широкие устьица будут способствовать большей скорости транспирации, в то время как более узкие устьица наоборот, замедлят этот процесс. Чем больше устьиц, тем активнее транспирация. Наличие большего количества или более крупных листьев также увеличивает общее количество устьиц и, следовательно, ускоряет транспирацию.

Условия окружающей среды: свет, температура, вода, ветер, влажность

Факторы окружающей среды также могут влиять на скорость транспирации. Поскольку устьица открываются во время фотосинтеза для поглощения углекислого газа, больше света будет сигнализировать об открытии устьиц, что, в свою очередь, увеличит скорость транспирации. С повышением температуры также увеличиваться испарение воды. Более высокие температуры обычно связаны с солнечным светом и вегетационным периодом, поэтому жаркая погода стимулирует замыкающие клетки открывать устьица, а холодная – закрывать.

Количество доступной воды играет большую роль в скорости транспирации. Вернемся к нашей аналогии с потением. Если вы потеете больше, чем пьете, вы обезвоживаетесь. То же самое происходит с растениями. Нехватка воды сигнализирует растению о замедлении процесса транспирации.

Ветер также влияет на скорость транспирации. Когда вы потеете, вы остываете быстрее, если дует ветер. Это связано с тем, что движение воздуха ускоряет процесс испарения: чем больше воздуха проходит по вашей коже, тем больше воды испаряется, и вы быстрее чувствуете прохладу. Большее движение воздуха означает более активное испарение из открытых устьиц, поэтому, если растения не закрывают свои устьица, скорость транспирации увеличится.

Еще одним фактором, сказывающемся на уровне транспирации является относительная влажность, которая представляет собой количество водяного пара в воздухе по отношению к тому, сколько водяного пара может удерживать этот воздух. Относительная влажность увеличивается с понижением температуры, поскольку более холодный воздух может удерживать меньше водяного пара. А по мере увеличения относительной влажности скорость транспирации уменьшается, так как воздух, окружающий растение, более влажный. Транспирация ускоряется в более сухом воздухе, потому что вода, выходящая из устьиц, легче испаряется в атмосферу с меньшим содержанием влаги.

Подведение итогов

Транспирация часто рассматривается как обязательная плата растения за фотосинтез. Хотя потеря воды может быть вредной для растений, фотосинтетический газообмен необходим для их выживания. Транспирация имеет свои преимущества – она ​​может охладить растения и помочь богатой питательными веществами воде перемещаться от корней к листьям. Регулируя транспирацию, растения могут управлять этим дорогостоящим процессом, продолжая при этом участвовать в других необходимых и полезных клеточных процессах.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: