Теодолитный ход – определение, назначение, основные виды и схемы

Теодолитный ход в геодезии – определение и назначение, как правильно проложить

Теодолитный ход является наиболее востребованной частью геодезических работ, переплетаясь со многими видами инженерной деятельности. В чем же его назначение и какие особенности выполнения разберем по порядку в нашей статье.

Назначение и основные разновидности

Проводится с целью точного отображения местности и расположенных на ней объектов на крупномасштабной карте, плане или специальных схемах.

Данная процедура подразумевает создание системы точек, закрепленных в натуре, и определение их горизонтальных углов при помощи теодолита или тахеометра. Расстояние между пунктами определяется при помощи светодальномеров, рулеток и других приборов, позволяющих обеспечить необходимую точность. По форме обычно принято различать следующие виды ходов:

В разомкнутом первая и последняя точка базируется на разные пункты и направления геодезической сети, чьи координаты и дирекционные углы уже определены, а замкнутый образует геометрическую фигуру, поэтому может опираться только на один. Особенность же висячего хода состоит в том, что один его конец примыкает к пункту геодезического обоснования, а второй остается свободным.

Его форма во многом зависит от того, на какой территории проводятся измерения. Например, для автодорог и трубопроводов хорошо подойдет разомкнутый ход, а на строительных площадках и земельных участках обязательно должен быть построен замкнутый полигон.

Достаточно распространённой процедурой является прокладывание внутри больших полигонов дополнительных сетей, чтобы полностью отобразить ситуацию на плане.

Порядок проведения

Выполнение теодолитного хода начинают с рекогносцировки, подразумевающей изучение ее особенностей и определение наиболее подходящих мест для установки точек.

Расстояние между ними должно варьироваться в пределах от 20 до 350 метров, но оно зависит также и от масштаба съемки. Наилучшей точности можно добиться, если расстояние будет одинаковым, но особенности территории далеко не всегда позволяют это сделать.

Съемку осуществляют на открытом пространстве с хорошей взаимной видимостью между пунктами, закрепленными специальными кольями из дерева, металла и других материалов. Для их долговременной сохранности нередко используются бетонные монолитные столпы. Также рекомендуется привязать каждый знак к твердым объектам поблизости, чтобы можно было восстановить его в случае потери.

Когда все подготовительные процедуры завершены и определено местоположение пунктов начинаются полевые работы. Прибор устанавливают на точке и измеряют угол за один прием, визируясь на соседние, после чего определяют расстояния между ними.

Если строится замкнутый полигон, за начальный берут магнитный азимут одной из сторон. Привязка к пункту геодезической сети необходима для определения дирекционного угла и координат, что позволит обеспечить должный контроль полученных результатов.

Все данные записываются в специальный журнал или автоматически заносятся в память электронного измерительного устройства. В дальнейшем они используются для камеральной обработки, которая подразумевает проведение расчетов с целью вычисления координат пунктов и жестких контуров.

Параллельно со съемкой составляется схематический чертеж, отображающий местоположение объектов на местности, который называется абрисом. Он представляет собой полноценный документ, является неотъемлемой частью технической документации и служит источником информации при построении плана или карты.

Во время составления абриса необходимо отобразить на нем как можно больше информации. Особенно важно обозначить все метрические данные и сделать его понятным для прочтения.

Во время снегопада, дождей и других неблагоприятных погодных условий, а также при плохой освещенности, проводить измерения запрещается.

Основные технические требования к линейным измерениям

Любые геодезические работы должны быть выполнены с четким соблюдением всех правил, дабы обеспечить получение самых точных результатов измерений. Основные требования к данной процедуре изложены в инструкции по топографической съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500, а также ряда других нормативных документов.

В зависимости от предельной относительной погрешности длина теодолитного хода должна соотносится со следующими показателями, приведенными в табл.1.

Буровая установка № скважины Литологический тип Коэф. крепости Размер отдельности, м Скорость фактическая, м/c
DM LP 6,0 4,0 2,0 6,0 3,0
СБШ 3,0 2,0 1,0 3,6 1,5
1:1000 1,8 1,2 0,6 1,5 1,5
1:500 0,9 0,6 0,3

(m_) – среднеквадратическая ошибка измеренных расстояний.

Показатели предельно допустимых длин между узловой точкой и исходной уменьшается на 30%, а также должны быть:

– больше 20 м, но меньше 350 м на застроенных участках;

– свыше 40 м и не более 350 м.

Аналогичные требования (табл. 2) есть и к висячим теодолитным ходам:

Масштаб Местность
Застроенная Не застроенная
1:5000 350 500
1:2000 200 300
1:1000 150 200
1:500 100 150

Измерение длин необходимо проводить в обе стороны и высчитать их среднее значение, а точность приборов должна быть не менее 30”. Допустимое отклонение при центрировании – не более 3 мм.

Съемка ситуации и ее виды

Прокладывание теодолитного хода, как правило, проводят для последующего отображения особенностей территории работ. Конечная цель – получения данных о местоположении снимаемых объектов в пространстве и составление контурной карты или плана местности без отображения рельефа. Фиксируются наиболее значимые элементы окружения:

– деревья и крупная растительность;

– государственные геодезические пункты;

– контуры зданий, сооружений и других жестких объектов.

Процесс их измерения называется съемкой ситуации, которая выполняется следующими способами:

  1. Способ перпендикуляров. Применяют для съемки объектов вытянутой формы, которые расположены преимущественно на открытом пространстве и близко к пунктам. Основной принцип выполнения этого способа строится на определении основания перпендикуляра, а также измерении его длины до станции.
  2. Полярных координат. Проводится, если снимаемая цель находится на большом расстоянии от пункта. Одна сторона принимается за полярную ось, а ее вершина – за полюс. Измеряются горизонтальные углы направления на заданную точку и определяют линейное расстояния до нее.
  3. Угловая засечка. Хорошо подходит для съемки труднодоступных точек. Их местоположение определяют совмещением сторон углов, измеренных от вершины теодолитного хода до заданного пункта с двух направлений.
  4. Метод створа (линейных промеров) используется, когда контуры местности пересекают уже построенный ход или его продолжение, а также для определения дополнительных точек посредством линейных измерений. Данный способ активно применяется на сильно застроенных участках.
  5. Способ обхода используют, как правило, на закрытой местности, если необходимо снять особо важный объект, но от вершин сторон это сделать невозможно по причине наличия препятствий или дальности. Прокладывают дополнительные пикеты, которые и привязывают к основным пунктам, а границы контура снимают методом перпендикуляра.

Геодезические работы основаны на принципе «от общего к частному». Поэтому, в теории, лучше всего сперва построить теодолитный ход, а потом уже провести съемку подробностей.

Обработка полученных результатов измерений

Выполнение контурной съемки проводится с целью получения данных, необходимых для дальнейшего расчета координат:

– длин сторон теодолитного хода;

Подсчет теоретической суммы угловых измерений () хода осуществляют по формуле (табл. 3).

замкнутый разомкнутый
(beta _= 180left ( n-2 right )) (beta _=left ( alpha _<р>+alpha _ <к>right )pm 180^cdot left ( n+1 right ))

n – количество точек;

(alpha _<н>)– значение начального дирекционного угла, –конечного;

Далее производят расчет угловой невязки:

(beta _<изм>)– сумма измеренных углов.

Следующим шагом будет сравнение (f_)с допуском (f_). Если результат не соответствует приведенному ниже выражению, необходимо перепроверь данные:

(f_ Читайте также: Координаты точек теодолитного хода: последовательность вычислений

При правильном выполнении расчетов сумма поправок будет иметь отрицательное значение:

Далее следует вычисление дирекционного угла (α), который начинают отчитывать от северного направления осевого меридиана по часовой стрелке.

В данном выражении (alpha _)– дирекционный угол предыдущей точки, (alpha _)– последующей.

(beta _<пр.исп>)– исправленное значение правого по ходу угла, (beta _<л.исп>)– исправленное значение левого по ходу угла.

Начальный α должен равняться конечному. Если же полученный α больше 360°, то перед тем, как занести показатели в журнал из них вычитают 360°.

Теперь вычисляется румб (r), который отсчитывают от самого близкого окончания осевого меридиана до ориентированной линии. Рассчитывается в зависимости от своего местоположения относительно четверти координат (табл. 4).

Таблица 4. Формула румба для каждой четверти.

Четверть и ее название Пределы α Формула Знаки приращения координат
ΔХ ΔУ
1 С.В. 0° – 90° r = α + +
2 Ю.В. 90°-180° r = 180° – α +
3 Ю.З. 180°-270° r = α – 180°
4 С.З. 270°-360° r = 360° – α +

Приращение геодезических координат определяют:

где: d – горизонтальное проложение;

r – румб стороны.

Уравнивание проводят при помощи приведенных ниже формул:

( sum Delta X_) и (sum Delta Y_)– сумма приращений координат, которые были определены с учетом знаков;

(sum Delta X_) и (sum Delta Y_) – теоретическая сумма приращения значений координат.

Стоит отметить, что в замкнутом полигоне последние значение равняются нулю, поэтому невязки должны быть равны сумме приращений или приближенными к нему.

Проверка условия допустимости:

1. Абсолютного значения:

где Р – периметр хода (сумма его горизонтальных проложений).

(left | f_ <отн>right |leq left | f_ <абс>right |)

Невязки раскидывают с обратным знаком, предварительно выполнив поправки на приращение каждой стороны при помощи таких формул:

(imath) – номер точки;

Все координаты вершин рассчитываются таким образом:

Составление плана

Полученные в процессе съемки и дальнейшей обработки данные используются для построения картографического материала, как с помощью специальных программ, так и вручную.

Выполняется в крупном масштабе и содержит подробную информацию о местности. Последовательность построения следующая:

  1. Создание координатной сетки. Берутся либо уже заранее подготовленные листы или чертятся с помощью линейки Дробышева. Также можно построить ее посредством проведения через плотный лист бумаги двух диагональных линий и последующего откладывания отрезков от их пересечения. Очень важно начертить сетку таким образом, чтобы схема хода и прилегающие территории находились в середине.

Правильность нанесения пунктов на план можно проверить по расстоянию между ними, которое не должно быть больше 0,2 мм. Кроме того, отображают ситуацию на нем при помощи методов, используемых во время полевых работ.

  1. Нанесение вершин и отображение ситуации. Точки пикетов отображаются на плане или карте, а потом переносят элементы окружающей местности, которые были предварительно зарисованы на абрисе. Отображаются они в виде символических графических обозначений, передающие информации об объекте, существующем в реальности – условных знаков.
  2. Зарамочное оформление. Обязательно указывают в каком масштабе выполнен план и какая местность и ситуация на нем изображена.

На сегодняшний день обработку и создание графических материалов выполняют при помощи специально созданного для этих целей программного обеспечения (ГЕОМИКС). Благодаря ему процессы камеральной обработки стали значительно проще и занимают гораздо меньше времени. Но только на на этом возможности геодезических программ не заканчиваются. Осуществив все необходимые вычисления и уравнивания, можно построить план в электронном виде и распечатать, а в случае необходимости провести коррективы.

Теодолитный ход

Теодолитный ход – это геодезическое построение в виде ломаной линии, вершины которой закрепляются на местности, и на них измеряются горизонтальные углы βi между сторонами хода и длины сторон Si. Закрепленные на местности точки называют точками теодолитного хода.

Построение теодолитного хода состоит из двух этапов. Это:
1. Построение ломаной линии на местности и осуществление полевых работ;
2. Математическое уравнивание хода и выполнение камеральной обработки полученных результатов.
Оба этапа выполняются строго по установленному регламенту с соблюдением норм и правил. Точность построения и обработки результатов обеспечивает правильность работы и последующую безопасность строительства или осуществления любой другой деятельности на местности.

Основные виды теодолитного хода.

Теодолитный ход – это разомкнутая или замкнутая ломаная линия. В зависимости от формы построения, различают несколько видов ходов:

Разомкнутый теодолитный ход, опирающийся на два пункта с известными координатами и два дирекционных угла. Разомкнутый ход можно охарактеризовать как простую линию. Проект трассы или любого другого продолжительного участка невозможен без разомкнутой линии. Опора у нее на известные точки. В отличие от замкнутого, начало и конец располагаются в разных точках.

Разомкнутый теодолитный ход, опирающийся на один исходный пункт и один дирекционный угол – такой ход еще называют висячим. Висячий ход используют редко, потому что для его вычисления потребуется специальная формула. Суть его такова, что он имеет только начало в определенной точке координат. Конец нужно вычислять.

Замкнутый ход по своей сути является многоугольной фигурой и опирается только на один базовый пункт с установленными координатами и дирекционным углом. Вершинами стороны выступают точки, закрепленными на местности, а отрезками – расстояние между ними. Его чаще всего создают для съемки стройплощадок, жилых зданий, промышленных сооружений или земельных участков.

Диагональный (прокладывают внутри других ходов). Если необходимо заснять ровный участок, вроде строительной площадки, лучшим выбором будет полигон. На объектах вытянутого типа, вроде автодорог, принято использовать разомкнутый ход, а висячий – для съемки закрытой местности, вроде глухих улиц

Порядок выполнения работ

Как и другие геодезические мероприятия, эта процедура проводится с предварительной подготовкой для получения точных метрических данных. Немаловажную роль играет также их математическая обработка. Сами работы выполняются по принципу от общего к частному и состоят из следующих этапов:
1. Рекогносцировка местности. Оценка снимаемой территории, изучение ее особенностей. На этом этапе определяется местоположение снимаемых точек.
2. Полевая съемка. Работы непосредственно уже на местности. Выполнение линейных и угловых измерений, составление абрисов, предварительные расчеты и внесение изменений при необходимости.
3. Камеральная обработка. Завершающий этап работ, который заключается в вычислении координат замкнутого теодолитного хода и последующего составления плана и технического отсчета.

Рекогносцировка и полевые измерения выполняются непосредственно на объекте и являются наиболее трудоемкими и затратными мероприятиями. Тем не менее, от качества их проведения зависит дальнейший результат.
Обработка данных проводится уже в помещении. Сегодня она осуществляется при помощи специального программного обеспечения, хотя и ручные расчеты все также остаются актуальными и могут быть использованы геодезистом в целях проверки.

Обработка данных

Обработка результатов измерений замкнутого теодолитного хода позволит оценить качество проделанной работы и внести исправления в полученные геометрические величины. Чтобы убедится в том, что угловые и линейные измерения находятся в допуске, еще во время полевых работ выполняют первичные расчеты.
Для вычисления значений координат точек замкнутого хода используют такие данные: – координаты исходного пункта;
– исходный дирекционный угол;
– горизонтальные углы;
– длины сторон.

Уравнивание

При начале расчетов определяют теоретическую сумму углов , а потом увязывают их, распределяя между ними угловую невязку.

n- количество точек полигона

∑βизм – значение измеренных угловых величин;

Для получения fβ, необходимо рассчитать разность между βизм, в которой присутствуют погрешности, и ∑βтеор.

В уравнивании fβ выступает как показатель точности проведенных измерительных работ, а ее значение не должно быть выше предельной величины, определяемой из следующей формулы:

t-точность измерительного устройства,
n – количество углов.
Уравнивание заканчивается равномерным распределением полученной невязки между угловыми величинами.

Определение дирекционных углов

При известном значении дирекционного угла (α) одной стороны и горизонтального (β) можно определить значение следующей стороны:

βпр – значение правого по ходу угла, из чего следует:

Для левого (βлев) эти знаки будут противоположными:

Поскольку значение дирекционного угла не может быть больше, чем 360∘, то из него, соответственно, отнимают 360∘. В случае с отрицательным углом, необходимо к предыдущему α добавить 180∘ и отнять значение βиспр.

Вычисление румбов

У румбов и дирекционных углов существует взаимосвязь, а определяют их по четвертям, которые носят название четырех сторон света. Как видно из табл.1. расчёты проводят согласно установленной схеме.

Таблица 1. Расчеты румба в зависимости от пределов дирекционного угла.

Приращения координат

Для приращений координат в замкнутом ходе применяют формулы, использующиеся при решении прямой геодезической задачи. Ее суть состоит в том, что по известным значениям координат исходного пункта, дирекционного угла и горизонтального приложения можно определить координаты следующего. Исходя из этого, формула приращения значений будет иметь следующий вид:

d-горизонтальное проложение;
α-горизонтальный угол.

Для полигона, который имеет вид замкнутой геометрической фигуры, теоретическая сумма приращений будет равняться нулю для обеих координатных осей:

Линейная невязка и невязка приращения значений координат

Несмотря на вышесказанное, случайные погрешности не позволяют алгебраическим суммам выйти в ноль, поэтому они будут равняться другим невязкам приращений координат:

Переменные fx и fy – проекции линейной невязки fp на координатной оси, которую можно рассчитать по формуле:

При этом fp, не должно быть боле, чем 1/2000 от доли периметра полигона, а распределения fx и fy проводится следующим образом:

В этих формулах δXi и δYi – поправки приращения координат.
і- номера точек;

После приращений и внесения поправок в данные измерений, проводят расчет их исправленных значений.

Вычисление координат

Когда будут произведены увязки приращений точек полигона, следует определение координат, которое осуществляют с использованием следующих формул:

Значения Xпос Yпос – координаты последующих пунктов, Xпр и Yпр – предыдущих.
ΔXисп и ΔYисп – исправленные приращения между этими двумя значениями.
Если координаты первой и последней точки совпадают, то обработку можно считать завершённой.
На основе полученных координат и составленных во время полевых измерений абрисов в дальнейшем составляется план теодолитного хода.

Замкнутый теодолитный ход: обработка и методика рассчета координат

Самой распространённой процедурой в инженерной геодезии считается построение теодолитного хода – системы ломаных линий и измеренных между ними углов. Замкнутым его называют, если он опирается только на один исходный пункт, а его стороны образуют многоугольную фигуру. Рассмотрим подробнее, как создается теодолитный ход замкнутого типа и какие у него особенности.

Разновидности теодолитных ходов

Ходы могут образовывать целые сети, пересекаясь между собой и охватывая значительные территории, а их форма определяется особенностями местности. Их принято разделять на:
– замкнутый (полигон);
– разомкнутый;
– висячий;
– диагональный (прокладывают внутри других ходов).Если необходимо заснять ровный участок, вроде строительной площадки, лучшим выбором будет полигон. На объектах вытянутого типа, вроде автодорог, принято использовать разомкнутый ход, а висячий – для съемки закрытой местности, вроде глухих улиц.


Замкнутый ход по своей сути является многоугольной фигурой и опирается только на один базовый пункт с установленными координатами и дирекционным углом. Вершинами стороны выступают точки, закрепленными на местности, а отрезками – расстояние между ними. Его чаще всего создают для съемки стройплощадок, жилых зданий, промышленных сооружений или земельных участков.

Порядок выполнения работ

Как и другие геодезические мероприятия, эта процедура проводится с предварительной подготовкой для получения точных метрических данных. Немаловажную роль играет также их математическая обработка. Сами работы выполняются по принципу от общего к частному и состоят из следующих этапов:

  1. Рекогносцировка местности. Оценка снимаемой территории, изучение ее особенностей. На этом этапе определяется местоположение снимаемых точек.
  2. Полевая съемка. Работы непосредственно уже на местности. Выполнение линейных и угловых измерений, составление абрисов, предварительные расчеты и внесение изменений при необходимости.
  3. Камеральная обработка. Завершающий этап работ, который заключается в вычислении координат замкнутого теодолитного хода и последующего составления плана и технического отсчета.

Рекогносцировка и полевые измерения выполняются непосредственно на объекте и являются наиболее трудоемкими и затратными мероприятиями. Тем не менее, от качества их проведения зависит дальнейший результат.
Обработка данных проводится уже в помещении. Сегодня она осуществляется при помощи специального программного обеспечения, хотя и ручные расчеты все также остаются актуальными и могут быть использованы геодезистом в целях проверки.

Обработка данных

Обработка результатов измерений замкнутого теодолитного хода позволит оценить качество проделанной работы и внести исправления в полученные геометрические величины. Чтобы убедится в том, что угловые и линейные измерения находятся в допуске, еще во время полевых работ выполняют первичные расчеты.
Для вычисления значений координат точек замкнутого хода используют такие данные:
– координаты исходного пункта;
– исходный дирекционный угол;
– горизонтальные углы;
– длины сторон.

Полевые измерения, выполненные даже при соблюдении всех правил и требований, будут иметь неточности. Они обусловлены систематическими и техническими ошибками, а также человеческим фактором.

Расчеты проводятся в определенной последовательности, которую рассмотрим далее.

Уравнивание

При начале расчетов определяют теоретическую сумму углов , а потом увязывают их, распределяя между ними угловую невязку.

n- количество точек полигона;

(sum beta _<изм>)– значение измеренных угловых величин;

Для получения (f_), необходимо рассчитать разность между (beta _<изм>), в которой присутствуют погрешности, и (sum beta _<теор>).

В уравнивании (f_) выступает как показатель точности проведенных измерительных работ, а ее значение не должно быть выше предельной величины, определяемой из следующей формулы:

t-точность измерительного устройства,
n – количество углов.
Уравнивание заканчивается равномерным распределением полученной невязки между угловыми величинами.

Определение дирекционных углов

При известном значении дирекционного угла ((alpha )) одной стороны и горизонтального ((beta )) можно определить значение следующей стороны:

(beta _<пр>)– значение правого по ходу угла, из чего следует:

Для левого ((beta _<лев>)) эти знаки будут противоположными:

Поскольку значение дирекционного угла не может быть больше, чем (360^), то из него, соответственно, отнимают (360^). В случае с отрицательным углом, необходимо к предыдущему (alpha ) добавить (180^) и отнять значение (beta _<испр>).

Вычисление румбов

У румбов и дирекционных углов существует взаимосвязь, а определяют их по четвертям, которые носят название четырех сторон света. Как видно из табл.1. расчёты проводят согласно установленной схеме.
Таблица 1. Расчеты румба в зависимости от пределов дирекционного угла.

Четверть Название относительно стороны света Пределы α Формула Знаки приращений
ΔХ ΔУ
I СВ (северо-восточный) 0° – 90° r = α + +
II ЮВ (юго-восточный) 90°-180° r = 180° – α +
III ЮЗ (юго-западный) 180°-270° r = α – 180°
IV СЗ (северо-западный) 270°-360° r = 360° – °α +

Приращения координат

Для приращений координат в замкнутом ходе применяют формулы, использующиеся при решении прямой геодезической задачи. Ее суть состоит в том, что по известным значениям координат исходного пункта, дирекционного угла и горизонтального приложения можно определить координаты следующего. Исходя из этого, формула приращения значений будет иметь следующий вид:

(Delta X = dcdot cos alpha )

(Delta Y = dcdot sin alpha )

d-горизонтальное проложение;
α-горизонтальный угол.

Для полигона, который имеет вид замкнутой геометрической фигуры, теоретическая сумма приращений будет равняться нулю для обеих координатных осей:

Линейная невязка и невязка приращения значений координат

Несмотря на вышесказанное, случайные погрешности не позволяют алгебраическим суммам выйти в ноль, поэтому они будут равняться другим невязкам приращений координат:

Переменные (f_) и (f_) – проекции линейной невязки (f_

) на координатной оси, которую можно рассчитать по формуле:

При этом (f_

), не должно быть боле, чем 1/2000 от доли периметра полигона, а распределения (f_) и (f_) проводится следующим образом:

В этих формулах (delta X_) и (delta Y_) – поправки приращения координат.
і- номера точек;

В расчетах важно не забывать о значениях алгебраической суммы, иначе говоря – знаках. При внесении поправок они должны быть противоположны знакам невязок.

После приращений и внесения поправок в данные измерений, проводят расчет их исправленных значений.

Вычисление координат

Когда будут произведены увязки приращений точек полигона, следует определение координат, которое осуществляют с использованием следующих формул:

Значения (X_<пос>) (Y_<пос>) – координаты последующих пунктов, (X_<пр>) и (Y_<пр>) – предыдущих.
(Delta X_<исп>) и (Delta Y_<исп>) – исправленные приращения между этими двумя значениями.
Если координаты первой и последней точки совпадают, то обработку можно считать завершённой.
На основе полученных координат и составленных во время полевых измерений абрисов в дальнейшем составляется план теодолитного хода.

Теодолитный и тахеометрический ходы

Прямая и обратная геодезические задачи на плоскости

Теодолитным ходом (см. рис. 1.11) называют построенную на местности разомкнутую или замкнутую ломаную линию, в которой измерены все стороны и горизонтальные углы между ними, т. е. в основу теодолитного хода положен метод полигонометрии.

Тахеометрическим ходом называют построенную на местности разомкнутую или замкнутую ломаную линию, в которой измерены все стороны, горизонтальные углы между ними и вертикальные углы с каждой точки хода на смежные с ней точки.

По измеренным сторонам и углам определяют прямоугольные координаты вершин теодолитного или тахеометрического хода, а по измеренным вертикальным углам и длинам сторон — превышения между точками тахеометрического хода, т. е. теодолитным ходом определяют плановое положение вершин хода, а тахеометрическим ходом — плановое и высотное их положение. На рисунке 1.14 изображена часть теодолитного хода. Для точки 1 координаты

(1.7)

Рис. 1.14 . Схема разомкнутого теодолитного хода

Формулы ( 1.7 ) решают прямую геодезическую задачу на плоскости, в которой при известных прямоугольных координатах х H ,у H , горизонтальном проложении d и дирекционном угле а требуется определить координаты х 1 , у 1 , точки 1.

В обратной задаче по известным координатам х 1 ,у 1 ; х 2 ,у 2 , точек 1 и 2 ( рис. 1.15 ) требуется определить дирекционный угол α и горизонтальное проложение d.

Рис.1.15 Решение обратной задачи на плоскости

На рисунке 1.15 из прямоугольного треугольника 122′

(1.8)

откуда находят дирекционный угол α. Горизонтальное проложение

(1.9)

Измерив горизонтальный угол β 0 между исходной и определяемой сторонами, на pисунке 1.14 имеем

(1.10)

если измерены левые по направлению теодолитного хода углы.

Если измерены правые углы β’ 0′ β’ 1 и т.д., то, учитывая β 0 = 360° – β’ 0 , вместо формулы (1.10) находим

(1.11)

Следовательно, для определения координат точек теодолитного хода необходимо начинать ход с опорной точки, имеющей координаты х H ,у H , и в этой начальной опорной точке измерить примычный угол β 0 и β’ 0 между линией с известным дирекционным углом и линией d1 хода.

Определение координат точек теодолитного хода

Разомкнутый теодолитный ход должен начинаться и заканчиваться на опорных точках H и К с известными координатами, и на этих точках должны быть измерены примычные углы β 0 и β n между опорными линиями с известными дирекционными углами и первой и последней линиями хода. Только в этом случае имеется возможность не только определить координаты всех точек теодолитного хода, но и проконтролировать правильность измерения углов и сторон хода и оценить точность выполненной работы. Если разомкнутый теодот литный ход имеет исходные данные только с одной стороны (в начале или конце хода), то его называют висячим теодолитным ходом.

Вычисление отметок точек тахеометрического хода

Если расстояния D в тахеометрическом ходе измеряли нитяным дальномером, то по полученным углам наклона v и расстояниям D вычисляют превышения

(1.20)

где i — высота прибора; l — высота визирной цепи; ƒ — поправка за кривизну Земли и рефракцию. Из прямых h пp. и h o6p. превышений определяют среднее значение, если расхождение между h np. не превышает 4 см на каждые 100 м расстояния между точками. Пример вычисления отметок точек тахеометрического хода приведен в таблице 7 .

Создание съемочных сетей проложением теодолитных ходов.

Рис. 6.5. Схемы теодолитных ходов: а – разомкнутого; б – замкнутого; в– висячего.

По форме теодолитный ход может быть разомкнутым – опирающимся на два исходных пункта и два исходных направления (рис. 6.5 а); замкнутым – опирающимся на один исходный пункт и одно направление (рис. 6.5 б); висячим – разомкнутым ходом, опирающимся на один исходный пункт и одно направление (рис. 6.5 в). Теодолитные ходы могут образовать систему теодолитных ходов с узловыми точками в местах их соединения (см. рис. 6.2 б).

Проект съемочной сети составляют на топографической карте или плане. Но часто положение ходов выбирают непосредственно на местности в процессе рекогносцировки. При этом учитывают ограничения на длину хода между исходными пунктами, приведенные в табл. 6.2. Длины ходов, опирающихся на узловые точки, уменьшают на 30%.

Места для точек хода выбирают так, чтобы обеспечить взаимную видимость между ними, благоприятные условия для съемки окружающей местности, удобства установки геодезических приборов и сохранность точек.

Точки ходов закрепляют деревянными кольями, костылями, металлическими трубами и т.п. Часть точек закрепляют знаками долговременной сохранности – столбами, бетонными монолитами.

Углы поворота теодолитного хода измеряют электронным тахеометром или теодолитом. При этом следят, чтобы на всех точках хода измерялись только правые, или только левые по ходу углы.

Для измерения угла в его вершине устанавливают прибор, а в соседних точках – визирные цели. Угол измеряют одним приемом.

Длины сторон измеряют электронным тахеометром или светодальномером, а при их отсутствии – землемерной лентой.

Результаты измерения углов и расстояний записывают в журналы установленной формы. При выполнении измерений тахеометром запись результатов измерений выполняется автоматически – в памяти прибора, откуда в последующем они вводятся для обработки в компьютер.

Обработка разомкнутого теодолитного хода. Исходными данными

в разомкнутом ходе (рис. 6.5 а) являются координаты начального и конечного пунктов 1 и 4 (, , , ) и дирекционные углы начального A-1 и конечного 4-B направлений ( и ).

При обработке вручную записи ведут в ведомость установленной формы (табл. 6.3). В графу 1 вписывают названия или номера точек. Вписывают исходные данные: в соответствующие строки графы 3 – начальный и конечный дирекционные углы, а в графы 7 и 8 – координаты начального и конечного пунктов (исходные данные в таблице выделены жирным шрифтом). Вписывают результаты измерений: измеренные углы – в графу 2, горизонтальные проложения сторон хода – в графу 4.

Уравнивание углов. Подсчитывают сумму измеренных углов . Теоретически эта сумма должна быть равна:

для правых углов – ;

для левых углов – ,

где n – число измеренных углов. В табл. 6.3 углы – правые.

Отличие фактической суммы углов от теоретической представляет угловую невязку хода:

. (6.2)

Как прокладываются теодолитные ходы, их назначение?

Теодолитный ход — система ломаных линий, в которой углы измеряются теодолитом. Стороны теодолитного хода, как правило, прокладываются по ровным, твёрдым и удобным для измерений местам. Их длина составляет 50—400 м, угол наклона до 5°. Вершины углов теодолитного хода закрепляют временными и постоянными знаками. Съёмка подробностей проводится с опорных точек и линий теодолитного хода, который прокладывается между опорными пунктами триангуляции, полигонометрии или образуется в виде замкнутых полигонов (многоугольников). Качество пройденного теодолитного хода определяется в ходе сопоставления фактических ошибок с допустимыми. Погрешность измерения углов в теодолитном ходе обычно не превышает 1′; а сторон — 1:2000 доли их длины.

Обычно теодолитная съемка применяется для создания контурных планов небольших по размеру участков местности.

Обработка полевых материалов теодолитной съемки.

Для съемки применяют следующие приборы и принадлежности:

1. Теодолит ( 2 Т30П, 4Т30П, ТЕО20 и др.) со штативом,

2. 20-ти метровая стальная лента или дальномеры соответствующей точности,

6. Журнал для записи измерения углов и линий.

Углы измеряют полным приемом с точностью ± 30”. Длины сторон теодолитного хода измеряют стальной лентой, рулеткой или электронными дальномерами дважды, с относительной погрешностью не превышающей 1/2000 или 1/3000, т. е. расхождения между двумя измерениями, например, на 100 м не должно превышать 3-5 см.

Вертикальные углы измеряют по вертикальному кругу теодолита, если он превышает 1,5°. Результаты угловых и линейных измерений заносят в журнал теодолитной съёмки.

Для вычисления координат точек теодолитного хода в общегосударственной системе координат и для контроля работ теодолитные ходы привязывают к ближайшим существующим опорным геодезическим пунктам любого класса и разряда.

Для этого на пунктах измеряют привязочные углы β31, β50, между исходными сторонами dн, dк и сторонами теодолитного хода ℓ1- ℓ5 соответственно (рисунок 32).

Рисунок – Разомкнутый теодолитный ход

В замкнутом теодолитном ходе достаточно иметь один или два пункта опорной геодезической сети (рисунок 33а,б). В случае б-(рисунок 33б) достаточно при опорном пункте 21 измерить привязочные углы β21.

Рисунок.- Схема привязки замкнутого теодолитного хода к опорным пунктам

Для вычисления координат точек необходимо знать координаты исходного пункта (21) и дирекционный угол исходной стороны (α 20-21).

Координаты точек теодолитного хода вычисляют решением прямой геодезической задачи.

Формула для вычислений дирекционных углов в теодолитном ходе.

Дирекционным углом α называется, горизонтальный угол между направлением данной линии и северной частью осевого меридиана или линии, ему параллельной,отсчитываемый по ходу часовой стрелки. Обозначается α, изменяется в пределах от 0° до 90°.

Связь между дирекционными углами и румбами сторон теодолитного хода.

Одним из этапов вычислительной обработки теодолитного хода является вычисление румбов.

Перевод дирекционных углов в румбы.

Дирекционные углы переводят в румбы, пользуясь зависимостью между дирекционными углами и румбами

Зависимость между дирекционными углами и румбами

Величина дирекционного угла Наименование румба Величина румба
0 – 90° СВ a
90° -180° ЮВ 180°- a
180° – 270° ЮЗ a – 180°
270° – 360° СЗ 360° – a

Вычисление относительной невязки хода

Относительная невязка теодолитного хода ƒотн определяется как частное от деления абсолютной невязки хода ƒабс на дину хода Р.

Ƒотн =

Допустимая относительная невзяка Ƒдоп.отн.=

Как вычисляются исправленные приращения

Исправленные приращениякоординат рассчитываются по формуле:

Где:∆xиспи ∆yисп. – исправленное приращения координат;

∆xв. и ∆yв.– вычисленное приращение координат;

n – количество приращений.

Прямая геодезическая задача

Прямая геодезическая задача заключается в нахождении координат определяемой точки по известным прямоугольным координатам заданной точки, расстоянию между ними и дирекционному углу с заданной точки на определяемую.

Для определения координат точки в прямой геодезической задаче обычно применяют формулы:

1) нахождения приращений:

2) нахождения координат:

В обратной геодезической задаче находят дирекционный угол и расстояние:

1) вычисляют румб по формуле:

2) находят дирекционный угол в зависимости от четверти угла:

четверти: Первая четверть Вторая четверть Третья четверть Четвертая четверть
знак приращения +X, +Y -X, +Y -X, -Y +X, -Y
диреционный угол a = r a = 180 – r a = 180 + r a = 360 – r

3) определяют расстояние между точками:

Геодезическая задача в том и другом виде возникает при обработке полигонометрии и триангуляции, а также во всех тех случаях, когда необходимо определить взаимное положение двух точек по длине и направлению соединяющей их линии или же расстояние и направление между этими точками по их геодезическим координатам. В ряде случаев геодезические задачи решают в пространственных прямоугольных координатах по формулам аналитической геометрии в пространстве. В этих случаях вместо длины и дирекционного угла, соединяющей две точки, используют длину и пространственные компоненты направления прямой линии между этими точками.

Нивелирование. Виды нивелирования

Нивелирование –определение высот точек земной поверхности относительно исходнойточки («нуля высот») или над уровнем моря.

Нивелирование – один из видов геодезических измерений, которые производятся для создания высотной опорной геодезической сети (т. е. нивелирной сети) и при топографической съѐмке, а также в целях проектирования, строительства и эксплуатации инженерных сооружений, железных и шоссейных дорог и т.д. Результаты нивелирования используются в научных исследованиях по изучению фигуры Земли, колебаний уровней морей и океанов, вертикальных движений земной коры и т.п.

По методу выполнения нивелирование различают на геометрическое,

тригонометрическое, барометрическое, механическое и гидростатическое нивелирование.

Рассмотрим виды нивелирования.

Геометрическое нивелирование выполняют путѐм визирования горизонтальным лучомтрубой нивелира и отсчитывания высоты визирного луча над земной поверхностью в некоторой еѐ точке по отвесно поставленной в этой точке рейке с нанесѐнными на ней делениями или штрихами.

Обычно применяют метод нивелирования из середины, устанавливая рейки на башмаках или колышках в двух точках, а нивелир — на штативе между ними (рисунок 1). Расстояния от нивелира до реек зависят от требуемой точности нивелирования и условий местности, но должны быть примерно равны и не более 100—150 м.

Превышение h одной точки над другой определяется разностью отсчѐтов а и b по рейкам, так что h = ab. Так как точки, в которых установлены рейки, близки друг к другу, то измеренное превышение одной из них относительно другой можно принять за расстояние между проходящими через них уровенными поверхностями.

Рисунок 1 – Геометрическое нивелирование (способ из середины)

Если геометрическим нивелированием определены последовательно превышения между точками А и В, В и С, С и D и т.д. до любой удалѐнной точки К, то путѐм суммирования можно получить измеренное превышение точки К относительно точки А или исходной точки О, принятой за начало счѐта высот. Уровенные поверхности Земли, проведѐнные на различных высотах или в различных точках земной поверхности, не параллельны между собой. Поэтому для определения нивелирной высоты точки К необходимо измеренное превышение относительно исходной точки О исправить поправкой, учитывающей непараллельность уровенных поверхностей Земли.

В нашей стране принята система нормальных высот, отсчитываемых от среднего уровня Балтийского моря, определѐнного из многолетних наблюдений относительно нуля футштока в Кронштадте.

В зависимости от точности и последовательности выполнения работы по геометрическому нивелированию подразделяются на классы.

Нивелирование I класса выполняют высокоточными нивелирами и штриховыми инварными рейками по особо выбранным линиям вдоль железных и шоссейных дорог, берегов морей и рек, а также по др. трассам, важным в том или ином отношении. По линиям нивелирования I класса средняя квадратичная случайная ошибка определения высот не превышает ±0,5 мм, а систематическая ошибка всегда менее ±0,1 мм на 1 км хода. Нивелирование I класса повторяют не реже, чем через 25 лет, а в отдельных районах значительно чаще, чтобы получить данные о возможных вертикальных движениях земной коры.

Между пунктами нивелирования I класса прокладывают линии нивелирования II класса, которые образуют полигоны с периметром 500—600 км и характеризуются средней квадратичной случайной ошибкой около ±1 мм и систематической ошибкой ±0,2 мм на 1 км хода. Нивелирные линии III и IV классов прокладываются на основе линий высших классов и служат для дальнейшего сгущения пунктов нивелирной сети. Для долговременной сохранности нивелирные пункты, выбираемые через каждые 5—7 км, закрепляются на местности реперами или марками нивелирными, закладываемыми в грунт, стены каменных зданий, устои мостов.

Тригонометрическое нивелирование основано на простой связи угла наклона визирноголуча, проходящего через две точки местности, с разностью высот этих точек и расстоянием между ними. Измерив теодолитом в точке А угол наклона n визирного луча, проходящего через визирную цель в точке В, и зная горизонтальное расстояние s между этими точками, высоту инструмента l и высоту цели а (рисунок 2), разность высот h этих точек вычисляют по формуле h = stgn + l – a.

Эта формула точна только для малых расстояний, когда можно не считаться с влиянием кривизны Земли и искривлением светового луча в атмосфере.

Более полная формула имеет вид h = s tgν + l – a + (1 – k) s 2 /2R, де R — радиус Земли как шара и k коэффициент рефракции.

Рисунок 2 – Тригонометрическое нивелирование

Тригонометрическим нивелирование определяют высоты пунктов триангуляции и полигонометрии. Оно широко применяется в топографической съѐмке.Тригонометрическоенивелирование позволяет определять разности высот двух значительно удалѐнных друг от друга пунктов, между которыми имеется оптическая видимость, но менее точно, чем геометрическое нивелирование. Точность его результатов в основном зависит от трудно учитываемого влияния земной рефракции.

Барометрическое нивелирование основано на зависимости давления воздуха от высотыточки над уровнем моря. Давление воздуха измеряют барометром. Для вычисления высоты в измеренное давление вводят поправки на влияние температуры и влажности воздуха. Барометрическое Н. широко применяют в географических и геологических экспедициях, а также при топографической съѐмке труднодоступных районов. При благоприятных метеорологических условиях погрешности определения высоты не превышают 2—3 м.

Механическое нивелирование выполняют установленным на велосипеде илиавтомашине нивелир-автоматом, позволяющим автоматически вычерчивать профиль местности и измерять расстояние по пройденному пути. В нивелир-автоматах вертикаль задаѐтся тяжѐлым отвесом, а расстояние фиксируется фрикционным диском,связанным с колесом велосипеда.Электромеханический нивелир-автомат монтируется на автомашине и позволяет определять не только разность высот смежных точек и расстояние между ними на соответствующих счѐтчиках, но и профиль местности на фотоленте.

Гидростатическое нивелирование основано на том,что свободная поверхностьжидкости в сообщающихся сосудах находится на одном уровне. Гидростатический нивелир состоит из двух стеклянных трубок, вставленных в рейки с делениями, соединѐнных резиновым или металлическим шлангом и заполненных жидкостью (вода, диметилфталат и т.п.). Разность высот определяют по разности уровней жидкости в стеклянных трубках, причѐм учитывают различие температуры и давления в различных частях жидкости гидростатического нивелира. Погрешности определения разности высот этим методом составляют 1—2 мм.

Гидростатическое нивелирование применяют для непрерывного изучения деформаций инженерных сооружений, высокоточного определения разности высот точек, разделѐнных широкими водными преградами.

Астрономическое и астрономо-гравиметрическое нивелирование применяют дляопределения высот геоида или квазигеоида над референц-эллипсоидом. Путѐм сравнения астрономических широт и долгот точек земной поверхности с их геодезическими широтами и долготами сначала находят составляющие отклонения отвеса в плоскостях меридиана и первого вертикала в каждой из этих точек. По этим составляющим вычисляют отклонения отвеса q в вертикальных плоскостях, проходящих через точки А и В, В и С и т.д., и тем самым получают углы наклона геоида относительно референц-эллипсоида в этих плоскостях. Выбирают точки А и В, В и С и т.д. настолько близко друг к другу, чтобы изменение отклонений отвеса между ними можно было считать линейным.

Разность высот Dz в смежных точках вычисляют по формуле

Зная высоту геоида в исходном пункте нивелирования и суммируя найденные приращения высот, получают высоту геоида в любом исследуемом пункте. Складывая же высоту геоида с ортометрической высотой, получают высоту точек земной поверхности над референц-эллипсоидом. Отклонения отвеса меняются от пункта к пункту линейно только при малых расстояниях между ними, так что астрономическое Н, требует густой сети астрономо-геодезических пунктов и поэтому невыгодно.

В России влияние нелинейной части уклонений отвеса учитывается по гравиметрическим данным. В этом случае астрономическое нивелирование превращается в

астрономо-гравиметрическое нивелирование,которое позволяет определять высотыквазигеоида и широко применяется в исследованиях фигуры и гравитационного поля Земли.

В этом разделе вы можете выбрать и купить(заказать) необходимые аксессуары для ваших геодезических приборов(геодезического оборудования), которые вы приобретаете в нашей компании или приобретали раньше.

Рассмотрим подробнее какие аксессуары и для каких приборов вам необходимо купить.

Для оптического нивелиравам необходимо выбрать штатив и рейку.Обычно вкомплекте покупают легкий алюминиевый штатив или легкий деревянный штатив. Из достоинств таких штативов необходимо отметить небольшой вес и невысокую цену. Нужно помнить, что легкий нивелирный штатив расчитан только на установку оптических нивелиров для стройки и некоторых моделей лазерных нивелиров. На штативах установлен винт с дюймовой резьбой.Рейку обычно приобретают

алюминиевую телескопическую. Такие рейки изготовлены из алюминия имеют небольшой вес и комплектуются пузырьковым уровнем и чехлом(чехол иммет лямку для переноски на плече). Широкое распространение получили нивелирные алюминиевые телескопические рейки длиной 3м/4м/5м, в сложенном состоянии длина рейки не превышает 1.2м. Звенья рейки соединяются между собой в рабочем состоянии помощью кнопок-фиксаторов.

Для электронного теодолитаотдельно приобретают штатив,иногда рейку.Штатив длятеодолита нужен прочнее чем для нивелира, поэтому обычно покупают алюминиевый штатив, который подходит и для установки тахеометров и для установки теодолитов. По-сравнению с нивелирным штативом этот аксессуар для теодолита имеет больший вес и размеры площадки для установки прибора. На такой штатив вы при необходимости сможете установить оптический или лазерный ротационный нивелир.

Для электронного тахеометрапокупают штатив(алюминиевый или деревянный),вехутелескопическую, отражатель(призма или минипризма). Минипризму с минивехой обычно приобретают для работ в строительстве, минивеха имеет небольшие размеры, а минипризма позволяет работать на удалении до 800 метров от электронного тахеометра. Вехи выпускаются длиной до 4,6 метров, и чаще всего изготавливаются из алюминия, раличаются также по способу закрепления секций в разложенном состоянии. Веха комплектуется уровнем и как правило продается вместе с чехлом для переноски.Отражатель можно купить в мягком чехле, чехол удобен для переноски отражателя.

Дальномеры лазерные.

Описание категории Лазерная рулетка – прибор, с помощью которого можно измерить расстояние,

определить геометрические размеры помещения. Лазерная рулетка имеет размеры , соизмеримые с размером мобильного телефона. Лазерный дальномер имеет жидкокристаллический дисплей для отображения результатов измерений. Топовые модели лазерных рулеток имеют цветной высококачественный дисплей и видеокамеру для точного наведения на цель. Лазерный дальномер (рулетка) значительно облегчает процесс геодезических и смежных с ними видов работ, в которых очень важно точное измерение геометрических параметров и расстояний. Самое главное преимущество лазерной рулетки перед обычной- это сокращение

количества рабочих и рабочего времени, измерение труднодоступных расстояний с высокой точностью.

Лазерный дальномер

Лазерный дальномер—это оптико-электронное устройство для определениядальности до любой точки или объекта на местности. Многие до сих пор называют лазерный дальномер рулетка, потому что этот современный инструмент для вычисления расстояний заменил геодезистам и строителям традиционную механическую рулетку. Лазерный дальномер

—это отдельное устройство, однако некоторые геодезические приборы, например тахеометры, включают его в свою комплектацию. Лазерные дальномеры широко используются для решения строительных, геодезических задач, а также для бытовых нужд. В зависимости от функциональности геодезического прибора он может не только измерять дальность, но и делать вычисления площадей и объемов каких-либо помещений.

Читайте также:
Инженерная графика, основы курса и теории чертежей
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: