Рибосомы – особенности строения, химический состав, функции

Строение и функции рибосом. Биосинтез белков и значение рибосом для организма

Рибосомы — субмикроскопические немембранные органеллы, необходимые для синтеза белка. Они объединяют аминокислоты в пептидную цепь, образуя новые белковые молекулы. Биосинтез осуществляется по матричной РНК путем трансляции.

Особенности строения

Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.

Форма шаровидная или овальная, в диаметре около 20нм.

На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.

Выделяют 2 вида рибосом:

  • Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
  • Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.

Схема строения

Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Химический состав

Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.

Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).

Образование в клетке

Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:

  • Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
  • неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
  • рибисома – зрелая органелла, состоящая из двух субъединиц.
Функции элементов рибосом
Структура Строение Функции
Большая субъединица Большая субъединица Треугольная, в диаметре 16нм, состоит из 3 молекул РНК и 33 белковых молекул Трансляция, декодирование генетической информации Трансляция, декодирование генетической информации
Малая субъединица Вогнутая, овальная, в диметре 14нм, состоит из 1 молекулы РНК и 21 белковых молекул Объединение аминокислот, создание пептидных связей, синтез новых молекул белка

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Роль рибосом в организме

  1. Рибосомы синтезируют белок для собственных нужд клетки и за ее пределы. Так в печени образуются плазменные факторы свертывания крови, плазмоциты продуцируют гамма-глобулины.
  2. Считывание закодированной информации с РНК, соединение аминокислот в запрограммированном порядке с образованием новых белковых молекул.
  3. Каталитическая функция – формирование пептидных связей, гидролиз ГТФ.
  4. Свои функции в клетке рибосомы выполняют более активно в виде полирибосом. Эти комплексы способны одновременно синтезировать несколько молекул белка.

Научная электронная библиотека

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

участие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

транспортировка питательных веществ и утилизация продуктов обмена клетки;

буферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

поддержание тургора (упругость) клетки;

все биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Рибосомы

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции — синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза.

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц. В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами. Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга — единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот — в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических — 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой — одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника — 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.

Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР — эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

Рибосомы, их структура и роль в синтезе белка

Вы будете перенаправлены на Автор24

Строение рибосом

Рибосомы – это субмикроскопические немебранные органеллы, основной функцией которых является биосинтез белка.

Они объединяют аминокислоты в пептидную цепь и формируют новые молекулы белка, которые необходимы клетке для осуществления всех процессов жизнедеятельности.

Биосинтез белка в данном случае осуществляется по матричной РНК путем процесса трансляции.

Рибосомы имеют несколько ключевых особенностей строения:

  • находятся в гранулярном эндоплазматическом ретикулуме, иногда свободно плавают в цитоплазме;
  • большой субъединицей рибосома крепится к эндоплазматической сети и синтезирует белок, который выводится за пределы клетки и используется организмом на обеспечение процесса жизнедеятельности;
  • рибосомы, которые находятся в цитоплазме в целом обеспечивают процессы жизнедеятельности внутри клетки.

Рибосома имеет шаровидную форму и диаметр около 20 нм. В процессе трансляции к матричной РНК может прикрепиться сразу несколько рибосом, формируя структуру – полисому. Рибосомы образуются в ядрышке, во внутреннем пространстве ядра.

Существует два вида рибосом:

  • малые рибосомы, которых находятся в прокариотических клетках, иногда в хлоропластах и матриксе митохондрии, они связаны с мембраной;
  • большие рибосомы характерны для клеток эукариот и связываются с эндоплазматической сетью или крепятся к мембране ядра.

Рисунок 1. Схема строения рибосомы. Автор24 — интернет-биржа студенческих работ

Строение обоих видов рибосом идентичное. Они состоят из двух субъединиц: большой и малой. Эти части объединяются при помощи ионов магния, а между соприкасающимися поверхностями остается лишь небольшая щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Готовые работы на аналогичную тему

Химический состав рибосомы также оригинален. Рибосомы состоят из высокополимерной рибосомальной РНК. Также в их составе выделяют белок. Обе субъединицы содержат около 4 молекул РНК, они имеют вид нитей, которые собраны в РНК. Эти нити окружаются белками и формируют комплексный рибонуклеопротеид.

Также рибосомы могут объединяться в специализированные комплексы полирибосомы.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на ее нить. В ходе синтезирующих процессов рибосомы разъединяются и обмениваются субъединицами. В момент поступления т-РНК они снова собираются в полирибосому.

Роль рибосом в процессе биосинтеза белка

Количество рибосом может поменяться в зависимости от функциональной нагрузки на клетку. Когда клетка вступает в период митотической активности и в ней в этот период можно обнаружить десятки тысяч рибосом. Такое количество характерно для меристем растений, а также стволовых клеток.

Рибосомы определенным образом образуются в клетке. Они формируются в ядрышке и матрицей для их создания является ДНК. До полного созревания они проходят несколько ключевых этапов:

  • эосома или процесс синтеза части р – РНК в ядрышке;
  • неосома или структура с р – РНК и белками, которые проходят в цитоплазму лишь после ряда модификаций;
  • рибосома или зрелая органелла, которая готова к выполнению собственных функций в полной мере и состоящая из двух субъединиц.

Каждый элемент рибосомы выполняет собственную уникальную функцию. Большая субъединица выполняет функции трансляции, декодирования генетической информации. Малая субъединица в свою очередь отвечает за объединение аминокислот, создание пептидных связей и синтез новых молекул белка.

Трансляция – это процесс синтеза белка на рибосомах или конечный этап преобразования генетической информации в клетке. В процессе трансляции информация закодирована в нуклеиновых кислотах и переходит в белковые молекулы, которые обладают строгой аминокислотной последовательностью.

Трансляция представляет собой достаточно непростой этап в формировании белковой молекулы. Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции новая молекула и – РНК выходит из ядра в цитоплазму, потом происходит несколько преобразований, и она соединяется с рибосомой. Аминокислоты начинают действовать после соединения с энергетическим субстратом ДНК.

Так как аминокислоты имеют различный состав РНК (химический). Без постороннего участия их процесс взаимодействия между собой становится невозможным. Чтобы преодолеть подобную несовместимость существует молекула транспортной РНК. Процесс соединения всех типов аминокислот становится возможным благодаря действию различных ферментов. В дальнейшем все рибосомальные ферменты участвуют в образовании пептидной связи. Далее запускается процесс перемещения рибосомы по цепи и – РНК. При этом остается участок для прикрепления новой аминокислоты.

В дальнейшем происходит рост полипептида, но до того момента, пока рибосома не встретит «стоп – кодон», который является сигналом к окончанию процесса синтеза. Для того, чтобы пептид смог освободиться от рибосомы, включаются факторы терминами, которые уже завершают процесс синтеза окончательно.

Последняя аминокислота прикрепляет к себе молекулу воды, а рибосома распадается на две субъединицы. В процессе продвижения рибосомы по и- РНК, она освобождает начальный отрезок цепи. К нему снова может прицепиться рибосома, и процесс биосинтеза белка запуститься снова.

Тем самым на одной матрице для биосинтеза происходит создание множества копий белка в течение одного момента времени.

Рибосомы важны для биосинтеза белка, поскольку они создают его для нужд самой клетки и за ее пределами.

Например, в печени создаются плазменные факторы свертывания крови. Также рибосомы выполняют своего рода каталитическую функцию при формировании пептидных связей в молекуле вновь созданного белка.

Активация функций рибосом происходит в тот момент, когда они объединяются в полирибосомы. Эти комплексы могут формировать одновременно несколько молекул белка.

Отличия про- и эукариотических рибосом, их химический состав.

Содержание

2. Особенности организации и функционирования рибосом, центриолей

3. Отличия про- и эукариотических рибосом, их химический состав.

4. Механизм сборки рибосом

5. Роль центриолей в процессе митоза и мейоза

Введение

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр и органоиды движения (жгутики и реснички).

Рибосомы — мелкие органоиды, образованные двумя субъединицами: большой и малой. Они состоят из белков и рРНК. Малая субъединица содержит одну молекулу рРНК и белки, большая — три молекулы рРНК и белки. Рибосомы могут либо свободно находиться в цитоплазме, либо прикрепляться к эндоплазматическому ретикулуму. На рибосомах происходит синтез белка. Белки, синтезируемые на рибосомах на поверхности эндоплазматического ретикулума, обычно поступают в его цистерны, а образовавшиеся на свободных рибосомах остаются в гиалоплазме.

Клеточный центр (центросома) обычно находится вблизи ядра, состоит из двух центриолей, располагающихся перпендикулярно друг к другу. Каждая центриоль имеет вид полого цилиндра, стенка которого образована девятью триплетами микротрубочек (9 + 0). Центриоли играют важную роль в делении клетки, образуя веретено деления.

Особенности организации и функционирования рибосом, центриолей

Рибосомы (PC) – немембранный универсальный органоид, присущий всем клеткам, как эукариот, так и прокариот. Их размер составляет =20 нм. Количество PC в клетке может достигать десятков тысяч.

Универсальная функция PC заключается в синтезе белка в клетке. У эукариот PC присутствуют в гиалоплазме (свободные PC), на шероховатом ЭР, на оболочке ядра, их называют 80S, а также в митохондриях и пластидах (70S).

S – единица седиментации, показывает скорость осаждения частиц при ультрацентрифугировании в градиенте плотности хлористого цезия. По величине S оценивают размер частиц.

Целая PC (состоящая из двух субъединиц) может диссоциировать на большую субъединицу рибосом (БСР) и малую (МСР): у прокариот БСР включает 50S, а малая – 30S; у эукариот – 60S и 40S.

БСР представлена центральной частью, называемой телом, оно имеет три выступа: ребро, головку и стержень. МСР, соответственно, имеет: тело, платформу, головку и клюв. Две субчастицы объединяются в рибосоме «головка к головке», «тело к телу», и в PC формируются четыре функциональных активных центра: аминоацильный (АЦ), пептидильный (ПЦ), трансферазный (ТЦ) и эжекторный (ЭЦ). Функция АЦ: связывания аминоацил т-РНК, за исключением стартовой, которая сразу приходит в ПЦ. ПЦ функция заключается в связывании пептидил т-РНК, т.е. транспортной РНК с пептидом, состоящим из двух и более аминокислотных остатков. ТЦ расположен на внутренней поверхности БСР в зоне контакта её с МСР. В этом центре работает фермент пептидилтрансфераза. Он катализирует реакцию переноса пептида с пептидил т-РНК, находящейся в ПЦ, на аминокислотный остаток аминоацил т-РНК, расположенный в АЦ. В результате образуется пептидная связь и аминоацил т-РНК становится пептидил т-РНК. ЭЦ расположен рядом с ПЦ и ТЦ. В него попадает т-РНК, освободившаяся от пептида из РЦ, т.е. свободная т-РНК, которая затем из ЭЦ уходит из PC.

С химической точки зрения, рибосома представляет собой рибонуклеопротеин, т.к. состоит из р-РНК и белков. В составе 70S рибосом прокариот имеются три вида р-РНК: 23S и 5S в БСР, 16S – в МСР. У эукариот в рибосоме содержится четыре вида

р-РНК: 28S, 5,8S и 5S в БСР, 18S – в МСР. Белки располагаются преимущественно на поверхности компактно уложенной р-РНК.

Клеточный центр

Клеточный центр (КЦ), или цитоцентр – универсальный немембранный органоид эукариотических клеток. Расположен в геометрическом центре клетки около ядра и представляет собой центр организации микротрубочек (ЦОМТ). В КЦ происходит полимеризация а- и р-тубулинов, входящих в состав МТ.

КЦ состоит из центросомы и центросферы, которые построены из МТ. Центросфера представляет собой совокупность радиально расходящихся МТ, а также содержит микрофибриллы и промежуточные филаменты.

Центросомы представляют собой полые цилиндрические тельца – центриоли (ЦО). Стенки ЦО образованы 9 триплетами МТ, которые соединены белками-связками.

Часто внутри одного из концов ЦО находится белковая стержневая структура – ось или втулка, от которой отходят 9 белковых фибрилл-спиц. Они соединяются с МТ и формируется внутренний скелет центриолей.

Структура ЦО и общая организация КЦ меняются в течение клеточного цикла.

ЦО играет роль «затравки» и для формирования жгутиков и ресничек у жгутиконосцев, инфузорий, а также в специализированных клетках многоклеточных

животных и человека. Ресничками обладают эпителиальные клетки дыхательных путей, а хвостик сперматозоида – это специализированный жгутик. План строения ресничек и жгутиков соответствует строению ЦО. Стенки этих органоидов движения представлены девятью дублетами МТ, которые растут от ЦО, в данном случае называемой базальным тельцем. В центре ресничек и жгутиков находятся две одиночные МТ. Дублеты способны скользить друг относительно друга, что заставляет

ресничку или жгутик изгибаться. Обычно реснички короче жгутиков более чем в 10 раз.

Итак, КЦ выполняет важнейшие универсальные функции в клетках эукариот:

организует сборку интерфазных МТ;

обеспечивает сборку нитей веретена деления, строящихся из МТ.

Отличия про- и эукариотических рибосом, их химический состав.

Прокариотическая клетка содержит несколько тысяч рибосом, в эукариотической клетке их в десятки раз больше. Рибосомы про- и эукариот отличаются по размерам (у прокариот они мельче, чем у эукариот), но принцип их строения одинаков. Состоят рибосомы из двух частей: большой и малой субъединиц. В их состав кроме белков входят РНК. Эти РНК получили название рибосомных, рРНК.

Величину рибосом и составляющих их частей принято указывать в специальных единицах – S (Сведберг). S – это коэффициент седиментации, который характеризует скорость перемещения молекул или частиц в центробежном поле при центрифугировании. Скорость перемещения зависит от массы частиц, их размеров и формы. Величина рибосом прокариот и эукариот – 70S и 80S соответственно.

В рибосомы прокариот входит три разных вида молекул рРНК (16S рРНК – в малую; 23S рРНК и 5S рРНК – в большую субъединицы) и 55 различных белков (21 – в малую и 34 – в большую субъединицы). В состав эукариотических рибосом входят четыре вида молекул рРНК (18S рРНК – в малую; 28S рРНК, 5.8S рРНК и 5S рРНК – в большую субъединицы) и около 80 белков. В митохондриях и хлоропластах также обнаружены рибосомы. Они характеризуются теми же свойствами и параметрами, что и рибосомы прокариот.

Молекулы рРНК взаимодействуют друг с другом и с белками, образуя компактные структуры – субъединицы рибосом. У эукариот соединение рРНК с рибосомными белками происходит в ядрышке. В центре ядрышка расположен участок хромосомы, в котором находятся гены рибосомных РНК. Синтезированные рРНК соединяются с рибосомными белками, которые поступили через ядерные поры из цитоплазмы, где они были синтезированы на уже существовавших рибосомах. Они соединяются с молекулами рРНК, образуя субъединицы рибосом. Готовые субъединицы через поры выходят в цитоплазму, где будут участвовать в синтезе белка.

Таким образом, ядрышко – это не только место синтеза рибосомных РНК, но и место сборки субъединиц рибосом. Рибосомы нужны в огромных количествах, поскольку в клетке постоянно идут процессы синтеза белка. Поэтому на хромосомах в тех местах, где расположены гены рРНК, находится громадное скопление молекул: синтезируемые рРНК, пришедшие из цитоплазмы рибосомные белки, собираемые и готовые суъединицы рибосом. Понятно, почему ядрышко является самой плотной частью ядра и клетки. Размеры ядрышка зависят от функционального состояния клеток. Если в клетке активно идут процессы биосинтеза белков, ядрышко может занимать до 25% от объема ядра.

Ядрышко образуется на тех хромосомах, где есть гены рРНК. Эти участки хромосом называются ядрышковыми организаторами. Например, у человека десять хромосом способны образовывать ядрышки. Каждый ядрышковый организатор представляет собой огромную хроматиновую петлю, так как содержит несколько десятков и даже сотен одинаковых последовательностей – генов рРНК. Эти последовательности расположены друг за другом и синтез рРНК идет одновременно со всех копий. Таким образом увеличивается интенсивность синтеза рРНК, на долю которой приходится более 90 % всей РНК клетки. Ядрышки, образованные разными хромосомами, очень часто сливаются друг с другом. В ядрах клеток человека обычно наблюдают одно, два или три ядрышка.

При начале трансляции малая субъединица рибосомы связывается с определенным участком иРНК, к ним присоединяется тРНК с аминокислотой, а затем с этим комплексом связывается большая субъединица. После этого рибосома готова к выполнению своей функции – синтезу белка. Белки рибосом способны выполнять свои функции только в составе рибосомы -только в комплексе с рРНК и другими рибосомными белками они приобретают небходимую конформацию.

Эукариотная транскрипция разделена с трансляцией в пространстве и времени. Транскрипция вместе с процессингом РНК происходят в нуклеоплазме, а трансляция, в зависимости от типа клеток, осуществляется преимущественно в цитозоле или на шероховатом эндогшазматическом ретикулуме (англ. rough endoplasmic reticulun, RER). Интегральные белки встраиваются в мембрану RER котрансляционно, а секретируемые белки выделяются в полость цистерны RER через тороидальный переходник между выходным порталом рибосомы и мембранным транслоконом (его образует белок Sec61).

У прокариотов не существует пространственно-временной изоляции процессов транскрипции и трансляции. Цитоплазматические рибосомы присоединяются к 5′-концу мРНК еще до завершения образования короткоживущего транскрипта. Котрансляционная инсерция интегральных белков известна только на примере «шероховатых тилакоидов» цианобактерий. Гидрофобные белки при помощи SRP-частиц презентируются транс локону — компоненту генеральной системы секреции Sec.

Транспортная РНК, напоминает в развернутой форме клеверный лист. Аминокислота прикреплена к “черешку клеверного листа”, а на вершине листа находится триплет, взаимодействующий с кодоном в иРНК – антикодон. Роль “заглавной буквы” при трансляции аминокислотной последовательности у прокариот выполняет измененная форма аминокислоты метионина – формилметионин. Ей соответствует кодон АУГ. После завершения синтеза полипептидной цепи формилметионин отщепляется и в готовом белке отсутствует. В том случае, когда триплет АУГ стоит внутри гена, он кодирует неизмененную аминокислоту метионин.

Если кодон и антикодон комплементарны друг другу, то рибосома передвигается относительно иРНК, и следующий кодон становится доступным для взаимодействия со следующей тРНК. Происходит отсоединение первой аминокислоты от первой тРНК и присоединение ее к аминокислоте, которую принесла вторая тРНК. Во время передвижения рибосомы относительно иРНК первая тРНК, свободная от аминокислоты, покидает рибосому. Вторая тРНК остается, соединенная с пептидом из двух аминокислотных остатков, и в рибосому входит третий кодон иРНК для взаимодействия с очередной тРНК и т.д.

Когда в рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА), ни одна тРНК не может занять место напротив него, так как не существует тРНК с антикодонами, комплементарными этим последовательностям. Полипептидной цепи не к чему присоединиться и она покидает рибосому. Синтез белка завершен. Таким образом, рибосома соединяет в одном месте участников трансляции: иРНК и аминокислоты в комплексе с тРНК, при этом молекулы РНК так ориентированы относительно друг друга, что становится возможным кодон-антикодоновое взаимодействие. Образование пептидной связи контролируется правильностью кодон-антикодонового взаимодействия. Рибосома осуществляет образование пептидной связи и перемещение относительно иРНК.

Молекула информационной РНК взаимодействует не с одной рибосомой, а с несколькими. Каждая рибосома проходит весь путь от “заглавного” кодона до терминирующего, синтезируя одну молекулу белка. Чем больше рибосом пройдет по иРНК, тем больше молекул белка будет синтезировано. Молекула информационной РНК с несколькими рибосомами похожа на нитку бус и называется полирибосомой, или полисомой.

Химический состав рибосом. В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

Содержание:

Строение клетки

«Строительные блоки» – это наименьшие структурные единицы растений, грибов, животных. Так говорят о клетках, из которых состоят многоклеточные организмы. Даже одна клетка бактерий, некоторых грибов, простейших — это и есть весь организм.

Сначала элементарная единица строения организмов получила латинское название cellula, что в переводе означает «маленькая камера». Древнегреческое слово «цитос» переводится как «ячейка». «Цитология» — название современной науки о строении и функциях разных типов клеток.

Бактерии, многие виды грибов, водорослей, простейшие животные — одноклеточные существа. Гораздо больше на Земле видов многоклеточных живых организмов. Вирусы не имеют клеточного строения, поэтому не могут быть отнесены ни к одной из названых групп. Однако для жизнедеятельности и размножения вирионы должны попасть в живые клетки.

Длительная эволюция жизни привела в далеком геологическом прошлом к появлению одноклеточных организмов. Многоклеточные возникли позже в истории Земли. Клетки у таких живых организмов преимущественно специализированные, имеют разнообразные формы, размеры и другие морфологические особенности. Они выполняют определенные функции в составе тканей и органов.

Цитологические знания появлялись, накапливались и дополнялись в течение нескольких веков. К середине XIX века исследователи сформулировали основные положения клеточной теории. Выдающийся вклад в развитие учения внесли М. Шлейден, Т. Шванн, Р. Вирхов и другие ученые.

Согласно результатам исследований, для клеток характерны:

  • общие черты строения;
  • наследственный аппарат, цитоплазма, мембрана (оболочка), органоиды;
  • способность поглощать вещества, использовать заключенную в них энергию;
  • реакции на внешние и внутренние раздражители;
  • возникновение в результате деления материнских клеток.

Средний диаметр структурных единиц человеческого организма — около 25 микрон (мк) или микрометров (мкм). Крупными размерами отличаются яйцеклетки — 0,15 мм. В целом, ткани тела человека содержат 200 типов «строительных блоков». Скопления клеток, сходных по структуре и функциям, образуют ткани. Последние составляют основу органов.

Органоиды клеток

Микроскопические автономные системы содержат много компонентов. Органоиды — постоянные части клетки (рис. 1). Включения возникают и исчезают в зависимости от возраста и процессов жизнедеятельности. Компоненты тесно взаимодействуют в микроскопически маленьком пространстве.

Плазматическая мембрана

Общая толщина составляет 6–10 нм. Плазматическая мембрана содержит двойной слой липидов и два слоя белков. Белковые молекулы расположены на поверхности и в толщине липидного слоя. Растительные клетки, помимо плазматической мембраны, имеют плотную клеточную стенку.

Цитоплазма

Под оболочкой клетки находится полужидкая масса, коллоид (промежуточное состояние между истинным раствором и взвесью). Цитоплазма содержит белки, липиды, углеводы, РНК, ионы. Имеются протеиновые структуры в виде микронитей и микротрубочек — цитоскелет. В цитоплазму погружены все компоненты клетки.

Ядро

Это «центр управления» внутриклеточными процессами, хранилище генетического материала. Размеры ядра — от 2 до 20 мкм. Основу мембран, покрывающих органоид снаружи, составляют белки и липиды. Внутри содержится ядерный сок или кариоплазма, ядрышко, хроматин. Наследственную информация содержат нити ДНК.

Митохондрии

«Энергетические станции» клетки — овальные или округлые тельца размером от 0,5 до 7 мкм. Наружная мембрана гладкая, внутренняя образует складки (кристы), как на

Матрикс содержит рибосомы, молекулы ДНК и РНК, ферменты. Часть вырабатываемой энергии расходуется в рибосомах, где из аминокислот синтезируются белки.

Пластиды

Крупные полуавтономные органоиды клетки, обладающие собственным геномом. Пластиды покрыты 2–4 белково-липидными оболочками. Внутри имеются строма, пузырьки, кольцевая молекула ДНК, рибосомы.

  • Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, различные каротиноиды.
  • Хромопласты — оранжевые и желтые; состоят из каротиноидов.
  • Лейкопласты — бесцветные или белые; содержат крахмал.
  • Пропластиды могут превращаться в другие виды.
  • Протеинопласты накапливают белки.
  • Амилопласты запасают крахмал
  • Элайопласты хранят липиды.

Получены веские доказательства происхождения пластид в результате симбиоза древней прокариотической клетки и цианобактерий.

Эндоплазматическая сеть или ретикулум (ЭР)

Система мешочков и каналов между ними диаметром 25–30 нм, образует единое целое с плазматической мембраной и оболочкой ядра. Различают гладкий и шероховатый ЭР. Сеть предназначена для транспортировки веществ в клетке к месту использования.

Комплекс Гольджи

Органоид в виде системы мешочков и пузырьков размером 20–30 нм. Комплекс Гольджи находится вблизи ядра, необходим для образования лизосом. Последние нужны для удаления продуктов распада.

Лизосомы

Мешочки сферической формы, покрытые одной мембраной. Внутреннее содержимое богато ферментами.

Вакуоли

Мешочки и пузырьки, покрытые одной мембраной. Крупные вакуоли характерны для растительных клеток, мелкие — для животных. Содержат пигменты, питательные вещества, минеральные растворы. Различают пищеварительные, фагоцитарные и сократительные вакуоли.

Клеточный центр

Органоид, не имеющий собственной мембраны. Клеточный центр образован центросферой и двумя центриолями, содержит белки, липиды, углеводы, нуклеиновые кислоты.

Рибосомы

Мелкие немембранные органоиды клетки. Состоят из большой и малой субъединиц. Рибосомы расположены в цитоплазме свободно или связаны с мембранами. Богаты РНК и белками.

Включения клетки могут быть жидкими и твердыми. Первые — это гранулы различных веществ. Капли жира — жидкие включения.

Если ядра нет, то организмы относятся к прокариотам (доядерным). В эволюционном плане они более древние и примитивные. Генетический материал таких клеток не отделен мембраной от цитоплазмы. Внутри расположены рибосомы. Почти не встречаются мембранные органоиды. Многие одноклеточные организмы относятся к прокариотам. Клетки, в которых хотя бы на одной стадии развития появляется ядро, — эукариотические.

Функции клеточных структур

Плазматическая мембрана ограничивает и препятствует вытеканию цитоплазмы, защищает находящиеся в ней органоиды. Оболочка клетки обладает избирательной проницаемостью. Происходит пассивный и активный транспорт веществ через микроотверстия.

Другие функции плазматической мембраны:

  • обеспечение реагирования на раздражители (раздражимость);
  • осуществление межклеточных контактов;
  • фагоцитоз;
  • пиноцитоз.

Пассивный транспорт через мембрану протекает без затрат энергии, в направлении от большей концентрации к меньшей. Так происходит осмотический перенос молекул воды. Активный транспорт протекает с затратами энергии, в направлении от меньшей концентрации к большей. Пример — диффузия питательных, минеральных веществ.

Клетка активно поглощает различные соединения. Если это твердые частицы, то процесс называется фагоцитоз. Поглощение капелек жидкости — пиноцитоз. Наружу через мембрану выводятся остатки веществ.

Цитоплазма объединяет органоиды и включения. Благодаря коллоидным и прочим свойствам внутреннего содержимого клетки осуществляется взаимодействие всех частей. Цитоскелет выполняет опорную функцию, способствует сохранению определенного положения органоидов в цитоплазме.

В ядре хранится наследственная информация, зашифрованная в структуре ДНК. Хроматин нужен для создания специфических для данного организма нуклеиновых кислот. Благодаря транскрипции РНК и поступлению данных в рибосомы происходит синтез белка. Ферменты нуклеоплазмы регулируют обмен аминокислот, белков, нуклеотидов. Ядро осуществляет контроль процессов жизнедеятельности клетки. Функции ядрышка — синтез одного из видов РНК.

Внутренняя мембрана митохондрии — место прикрепления ферментов для синтеза АТФ. Макроэргическое вещество необходимо для процессов жизнедеятельности. В митохондрии протекает аэробный этап дыхания, который сопровождается образованием АТФ.

Зеленая окраска хлоропластов обусловлена основным пигментом фотосинтеза. Осуществление этого процесса — основная задача пластид зеленого цвета. Световые реакции протекают на мембранах, содержащих молекулы хлорофилла. Темновые реакции фотосинтеза происходят в строме, богатой ферментами.

Хромопласты придают окраску цветкам, содержатся в плодах. Этот тип пластид обеспечивает привлечение опылителей и распространителей семян растений. Лейкопласты служат для запасания питательных веществ — крахмала, белка, масла.

В рибосомах шероховатого эндоплазматического ретикулума происходит синтез белков. Гладкий ЭР содержит ферменты для синтеза, преобразований липидов и углеводов. Этот же тип трубочек и мешочков служит для образования лизосом, транспорта и обезвреживания токсических веществ. Растворение крупных молекул, переваривание старых клеточных структур происходит в лизосомах. Они принимают активное участие в фагоцитозе, гибели клеток.

Пищеварительные вакуоли участвуют в фагоцитозе, выделяют ненужные вещества в окружающую среду. Сократительные — обеспечивают поддержание водно-солевого баланса.

Рибосомы участвуют в сборке белковых молекул. Клеточный центр нужен для правильного распределения генетического материала при митотическом делении. Этот органоид служит для образования выростов клеток — жгутиков и ресничек (органоидов движения).

Включениями называют непостоянные компоненты клеток. Одни вещества в их составе являются запасом питания, другие — отходами жизнедеятельности.

Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

Органоиды — относительно обособленные компоненты, обладающие специфическими функциями и особенностями строения. Основная часть генетического материала эукариотической клетки сосредоточена в ядре. Центральный органоид в одиночку не в состоянии обеспечить реализацию наследственной информации. Принимают участие цитоплазма и рибосомы. Они расположены в основном на шероховатой эндоплазматической сети.

Синтезированные белки транспортируются в комплекс Гольджи, после преобразований — в те части клетки, где они нужны. Благодаря лизосомам клетки не превращаются в «свалки отходов».

Митохондрии вырабатывают энергию, необходимую для осуществления процессов в клетке. Хлоропласты у растений служат для получения исходного материала, участвующего в энергетических превращениях.

Условно все органоиды клетки делят на три группы по характеру выполняемых функций. Митохондрии и хлоропласты осуществляют превращения энергии. Рибосомы, их скопления осуществляют синтез белков. Другие образования принимают участие в синтезе и обмене веществ.

Несмотря на существующие различия, все части клетки тесно взаимодействуют. Органоиды взаимосвязаны не только в пространстве, но и химически. Связывает все части клетки цитоплазма, в ней же происходят многочисленные реакции. В результате формируется единая структурная и функциональная система.

Строение растительной клетки

Рис.1 Растительная клетка

Отличие клеточного строения растений от животных — наличие стенки, состоящей из целлюлозы, пектина, лигнина.

Под прочной оболочкой находится плазматическая мембрана, имеющей типичное строение. Есть поры, через которые осуществляется связь между соседними клетками посредством плазмодесм, цитоплазматических мостиков. Нет центриолей, характерных для животных.

Важное отличие растительных организмов — наличие пластид. Крупные хлоропласты придают частям растений зеленый цвет. Фотосинтез в зеленых пластидах — процесс автотрофного питания. Растения создают органическое вещество из воды и углекислого газа при участии солнечного света.

Оранжевая и желтая окраска обусловлена присутствием других типов пластид, красная и синяя — возникает благодаря антоцианам. Лейкопласты и хромопласты специализируются на хранении веществ.

Крупная центральная вакуоль в растительной клетке заполнена клеточным соком. Органоиду принадлежит ведущая роль в поддержании тургора, хранении полезных веществ и разрушении старых белков, отживших свое органоидов.

Строение животной клетки

Это типичные эукариотические клетки. Под плазматической мембраной находятся цитоплазма и органоиды. Клеточной стенки нет. ДНК локализована в ядре и митохондриях.

Рис.2 Животная клетка

Вакуоли в клетках животных выполняют пищеварительные и сократительные функции. Центриоли состоят из пучков микротрубочек, принимающих участие в процессе деления. В качестве органелл движения могут присутствовать реснички и жгутики. Они важны для перемещения одноклеточных животных. В организме многоклеточных создают движение жидкостей или молекул твердых веществ вдоль неподвижных клеток.

Клетка — мельчайшая единица строения многоклеточных организмов. У одноклеточных это и есть тело. Любая клетка представляет собой сложную биохимическую систему. Части или органоиды действуют как единое целое, обеспечивают жизнедеятельность, а при размножении — передачу наследственных признаков.

Строение и функции белков

Вернуться к теме “Строение и функции белков”

Задания по теме “Строение и функции белков” для самостоятельной подготовки к ЕГЭ по биологии

СКОРО! – Видео с объяснениями – СКОРО!

1. Установите со­от­вет­ствие между ха­рак­те­ри­сти­кой хи­ми­че­ско­го ве­ще­ства и ве­ще­ством в ор­га­низ­ме человека

А) спе­ци­фич­ные ка­та­ли­за­то­ры химических реакций

Б) пред­став­ле­ны толь­ко белками

В) бы­ва­ют бел­ко­вой и ли­пид­ной природы

Г) необходимы для нор­маль­но­го обмена веществ

Д) вы­де­ля­ют­ся не­по­сред­ствен­но в кровь

Е) в ос­нов­ном по­сту­па­ют вме­сте с пищей

2. Выберите примеры функций белков, осуществляемых ими на клеточном уровне жизни

1) обеспечивают транспорт ионов через мембрану

2) входят в состав волос, перьев

3) формируют кожные покровы

4) антитела связывают антигены

5) запасают кислород в мышцах

6) обеспечивают работу веретена деления

3. Выберите осо­бен­но­сти стро­е­ния мо­ле­кул белков

1) со­сто­ят из жир­ных кислот

2) со­сто­ят из аминокислот

3) мо­но­ме­ры мо­ле­ку­лы удер­жи­ва­ют­ся пеп­тид­ны­ми связями

4) со­сто­ят из оди­на­ко­вых по стро­е­нию мономеров

5) пред­став­ля­ют собой мно­го­атом­ные спирты

6) чет­вер­тич­ная струк­ту­ра мо­ле­кул со­сто­ит из не­сколь­ких глобул

4. Выберите три функции, ха­рак­тер­ные толь­ко для белков

5. Все приведённые ниже признаки, кроме двух, можно использовать для описания значения белков в организме человека и животных. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны

1) служат основным строительным материалом

2) расщепляются в кишечнике до глицерина и жирных кислот

3) образуются из аминокислот

4) в печени превращаются в гликоген

5) в качестве ферментов ускоряют химические реакции

6. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы инсулина. Определите два признака, «выпадающие» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1) состоит из аминокислот

2) гормон надпочечников

3) катализатор многих химических реакций

4) гормон поджелудочной железы

5) вещество белковой природы

7. Все перечисленные ниже признаки, кроме двух, можно использовать для описания яичного белка альбумина. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны

1) состоит из аминокислот

2) пищеварительный фермент

3) денатурирует обратимо при варке яйца

4) мономеры связаны пептидными связями

5) молекула образует первичную, вторичную и третичную структуры

8. Белки в организме человека и животных

1) служат основным строительным материалом

2) расщепляются в кишечнике до глицерина и жирных кислот

3) образуются из аминокислот

4) в печени превращаются в гликоген

5) откладываются в запас

6) в качестве ферментов ускоряют химические реакции

9. Установите соответствие между характеристикой и функцией белка, которую он выполняет

А) входит в состав центриолей

Б) образует рибосомы

В) представляет собой гормон

Г) формирует мембраны клеток

Д) изменяет активность генов

10. Найдите ошибки в приведенном тексте, исправьте их. Укажите номера пред-ложений, в которых сделаны ошибки, объясните их

1. Большое значение в строении и жизнедеятельности организмов имеют белки. 2. Это биополимеры, мономерами которых являются азотистые основания. 3. Белки входят в состав плазматической мембраны. 4. Многие белки выполняют в клетке ферментативную функцию. 5. В молекулах белка зашифрована наследственная информация о признаках организма. 6. Молекулы белка и тРНК входят в состав рибосом.

1) 2 – Это биополимеры, мономерами которых являются аминокислоты;

2) 5 – В молекулах ДНК зашифрована наследственная информация;

3) 6 – Молекулы белка и рРНК входят в состав рибосом.

11. Какова природа большинства ферментов и почему они теряют свою активность при повышении уровня радиации?

1) большинство ферментов — белки;

2) под действием радиации происходит денатурация, изменяется структура белка-фермента.

12. Почему человек без опасных последствий употребляет в пищу белки в виде мяса, рыбы, яиц, а вводить белки сразу в кровь для питания больных ни в коем случае нельзя?

1) белки в пищеварительном тракте, в желудке, в кислой среде расщепляются до аминокислот ферментами пептидазами;

2) в кровь попадают уже аминокислоты и разносятся к клеткам тканей;

3) введение в кровь чужеродных белков вызовет иммунную реакцию, отторжение, возможна даже гибель больного.

13. Может ли человек питаться только жирами, исключив из рациона белковую пищу?

2) Отсутствие белков приведет к тому, что в клетках не будут выполняться следующие функции: ферментативная, двигательная, защитная, транспортная.

3) Синтез белков из жиров невозможен, т.к. белки имеют более сложное строение (их молекулы включают азот и серу).

14. Почему повышение температуры выше 40° опасно для жизни?

Читайте также:
Триглицериды - определение, структурная формула, функции
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: