Прямая в математике – обозначение, уравнение и формула

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 – прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ – p = 0 – нормальное уравнение прямой.

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x – x 0 ) + B ( y – y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) не являлись бы перпендикулярными, и равенство A ( x – x 0 ) + B ( y – y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x – x 0 ) + B ( y – y 0 ) = 0

Перепишем уравнение A x + B y – A x 0 – B y 0 = 0 , определим C : C = – A x 0 – B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y – 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y – 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение – C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу – C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , – 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = – 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x – 2 = 0

Ответ: 7 x – 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = – 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y – 3 = 0 .

Ответ: y – 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x – x 0 ) + B ( y – y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( – 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , – 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = – 2 , x 0 = – 3 , y 0 = 4 . Тогда:

A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 1 · ( x – ( – 3 ) ) – 2 · y ( y – 4 ) = 0 ⇔ ⇔ x – 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x – 2 · y + C = 0 ⇔ x – 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( – 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x – 2 · y + C = 0 , т.е. – 3 – 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x – 2 · y + 11 = 0 .

Ответ: x – 2 · y + 11 = 0 .

Задана прямая 2 3 x – y – 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна – 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = – 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 – y 0 – 1 2 = 0

Определяем y 0 : 2 3 · ( – 3 ) – y 0 – 1 2 = 0 ⇔ – 5 2 – y 0 = 0 ⇔ y 0 = – 5 2

Ответ: – 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x – x 1 a x = y – y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = – B y .

Это равенство возможно записать как пропорцию: x + C A – B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = – B y – C . Выносим – В за скобки, тогда: A x = – B y + C B .

Перепишем равенство в виде пропорции: x – B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y – 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y – 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим – 3 за скобки; получаем: 0 x = – 3 y – 4 3 .

Запишем полученное равенство как пропорцию: x – 3 = y – 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x – 3 = y – 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x – 5 y – 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x – 5 y – 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = – A x – C . Разделим обе части полученного равенство на B , отличное от нуля: y = – A B x – C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y – 2 x ⇔ y = – 2 7 x

Ответ: y = – 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = – C ⇔ ⇔ A – C x + B – C y = 1 ⇔ x – C A + y – C B = 1

Необходимо преобразовать общее уравнение прямой x – 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x – 7 y + 1 2 = 0 ⇔ x – 7 y = – 1 2 .

Разделим на -1/2 обе части равенства: x – 7 y = – 1 2 ⇔ 1 – 1 2 x – 7 – 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 – 1 2 x – 7 – 1 2 y = 1 ⇔ x – 1 2 + y 1 14 = 1 .

Ответ: x – 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y – 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y – k x – b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x ( y – y 1 ) ⇔ ⇔ a y x – a x y – a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = – 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = – 1 + 2 · λ y = 4 ⇔ x = – 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y – 4 0 ⇔ x + 1 2 = y – 4 0

Перейдем от канонического к общему:

x + 1 2 = y – 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y – 4 ) ⇔ y – 4 = 0

Ответ: y – 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y – 1 = 0

Ответ: 1 3 x + 2 y – 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x – x 0 ) + B ( y – y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x – 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , – 3 ) : 2 x – 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 2 ( x – 4 ) – 3 ( y – 1 ) = 0 ⇔ 2 x – 3 y – 5 = 0

Ответ: 2 x – 3 y – 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x – 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x – 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 3 ( x – 0 ) + 5 ( y – 0 ) = 0 ⇔ 3 x + 5 y = 0

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k – угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

x + y = 1
a b

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x – x 1 = y – y 1
x 2 – x 1 y 2 – y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x y = m t + y

где N( x , y ) – координаты точки лежащей на прямой, a = < l , m >– координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x , y ) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x – x = y – y
l m

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x – 1 2 – 1 = y – 7 3 – 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y – N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x – x 1 = y – y 1 = z – z 1
x 2 – x 1 y 2 – y 1 z 2 – z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x
y = m t + y
z = n t + z

где ( x , y , z ) – координаты точки лежащей на прямой, – координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x , y , z ) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x – x = y – y = z – z
l m n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Геометрия 7 класс.
Точка, прямая и отрезок

Казалось бы, что таким простым понятиям, как «точка» или «прямая», которые мы повседневно используем в жизни, крайне просто дать определения. Но на практике оказалось, что это не так.

Существует множество определений, которые давали знаменитые математики терминам «точка» и «прямая». За многие века ученые так и не пришли к единому определению.

Мы не будем приводить все определения точки и прямой. Остановимся на объяснениях, которые, на наш взгляд, наиболее простым образом их описывают.

Точка — элементарная фигура, не имеющая частей.

Прямая состоит из множества точек и простирается бесконечно в обе стороны.

На рисунке изображена прямая a и точки D, F, G и H . Точки F и G лежат на прямой a . Точки D и H не лежат на прямой a .

В тексте точку обозначают символом « (·)» . Принадлежность и непринадлежность точки прямой обозначают символами « ∈ » и « ∉ ». Знак принадлежности можно запомнить как зеркальное отображение буквы « Э » или как знак евро « € » .

То есть выражаясь геометрическими обозначениями, информацию о расположении прямой и точек на рисунке выше можно записать так:

  • (·)F ∈ a — точка F принадлежит прямой a (другими словами, точка F лежит на прямой a );
  • (·)G ∈ a — точка G принадлежит прямой a ;
  • (·)D ∉ a — точка D не принадлежит прямой a (другими словами, точка D не лежит на прямой a );
  • (·)H ∉ a — точка H не принадлежит прямой a .

Как обозначить прямую

Прямую обычно обозначают одной маленькой латинской буквой.

Прямую, на которой отмечены две точки, иногда обозначают по названиям этих точек большими латинскими точками.

    На рисунке изображены:
  • Прямая a
  • Прямая f
  • Прямая CH
  • Прямая DK

Точки D, E и F — лежат на одной прямой, поэтому: прямая DE , прямая EF и прямая DF — это три разных имени одной и той же прямой.

Задача № 1 из учебника Атанасян 7-9 класс

Проведите прямую, обозначьте её буквой a и отметьте точки A и B , лежащие на этой прямой, и точки P, Q и R , не лежащие на ней. Опишите взаимное расположение точек A, B, P, Q, R и прямой a , используя символы ∈ и ∉ .

Решение задачи

Обозначим её буквой a .

Отметим точки (·)A и (·)B , лежащие на прямой a .

Отметим точки (·)P, (·)Q и (·)R , не лежащие на прямой a .

Опишем взаимное расположение точек и прямой.

  • (·)A ∈ a
  • (·)B ∈ a
  • (·)P ∉ a
  • (·)Q ∉ a
  • (·)R ∉ a

Как обозначается пересечение прямых

На рисунке прямые a и b не пересекаются . Прямые b и c пересекаются .

Хотя на чертеже не видно, но прямые a и c тоже пересекаются (это становится ясно, если мысленно продолжить вниз прямые a и с ).

В тексте пересечение прямых обозначают символом ∩ . Информацию на рисунке выше можно записать следующим образом:

  • b ∩ c — прямые b и с пересекаются;
  • a ∩ c — прямые a и с пересекаются.

Прямые e и g имеют общую точку M . Другими словами, прямые пересекаются в точке M . Геометрическими обозначениями пересечение прямых в точке записывается так:
e ∩ g = (·)M

Прямые e и f не имеют общей точки — т.е. они не пересекаются.

Взаимное расположение прямой и точек

Через любые две точки можно провести прямую, и притом только одну .

Через одну точку (·)A можно провести сколько угодно прямых.

Через две точки (·)A и (·)B можно провести только одну прямую.

Сколько общих точек имеют две прямые

Две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Докажем утверждение выше. Для этого рассмотрим все возможные случаи расположения двух прямых.

Первый случай расположения прямых

На рисунке выше мы видим, что у прямых f и e нет общих точек, т.к. эти прямые не пересекаются.

Второй случай расположения прямых

Возможен вариант, что прямые f и e пересекаются и, значит, имеют одну общую точку (·)M .

Третий случай расположения прямых

Предположим, что прямые f и e имеют две или больше общих точек. Например, точки (·)A и (·)B .

Но мы знаем, что через две точки можно провести только одну прямую. Значит, прямые f и e совпадают и наше предположение, что у двух прямых может быть две или более общих точек неверно .

Вывод: две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Задача № 3 из учебника Атанасян 7-9 класс

Проведите три прямые так, чтобы каждые две из них пересекались. Обозначьте все точки пересечения этих прямых. Сколько получилось точек? Рассмотрите все возможные случаи.

Решение задачи

Проведём две прямые a и b так, чтобы эти две прямые пересекались, и обозначим точку пересечения.

Как мы видим, точка пересечения только одна. Мы можем провести третью прямую так, чтобы она тоже проходила через эту точку пересечения.

Теперь прямая a пересекается с прямой b , прямая b пересекается с прямой c и прямая c пересекается с прямой a .

В этом случае у нас только одна точка пересечения всех прямых — точка (·)D .

Но возможен и другой вариант. Мы можем провести третью прямую c так, чтобы она не проходила через точку (·)D . Тогда получится три точки пересечения — (·)D, (·)E и (·)F .

Прямая a пересекается с прямой b в точке (·)D , прямая b пересекается с прямой c в точке (·)F и прямая c пересекается с прямой a в точке (·)E . Условие задачи выполнено.

Мы убедились, что возможны оба варианта. Поэтому в ответе запишем их оба.

Ответ: точек пересечения получается одна или три.

Что такое отрезок

Отрезок — часть прямой, ограниченная двумя точками.

Две точки, ограничивающие отрезок, называются концами отрезка. У отрезка на рисунке выше концы называются S и T .

Сам отрезок можно назвать ST или TS . Когда изображают отрезок, оставшиеся от прямой хвосты можно не рисовать.

В отличии от прямой любой отрезок можно измерить. Т.е. каждый отрезок имеет длину.

Плоскость, прямая линия, луч

Плоскость в математике можно сравнить с другими плоскостями, которые окружают нас в повседневной жизни: школьная доска, лист бумаги, экран планшета или смартфона и т.д. На них мы можем легко обозначить точки и линии, которые мы изучали на предыдущем уроке. На школьной доске мы это делаем мелом или фломастером, на листе бумаги можем нарисовать их ручкой, карандашом, фломастером; когда мы прокручиваем окно сайта или приложения на смартфоне, мы проводим на экране пальцем линию, когда переходим по ссылкам – ставим на его плоскости точку.

Но эти примеры плоскостей из жизни имеют свои размеры и границы, они конечные, их можно измерять.

Плоскость – это воображаемая абсолютно ровная и неизменяемая поверхность, которая не имеет толщины, но обладает бесконечными длиной и шириной.

Плоскость нельзя измерять, потому что она бесконечная.

Плоскость нельзя согнуть, в каком бы положении она ни находилась.

Все объекты и фигуры, которые изучаются в курсе математики 5 класса, находятся на плоскости.

Прямая линия

Прямая линия – абсолютно ровная линия, которая длится бесконечно в обе стороны, и на всем ее протяжении не изгибается и не преломляется.

Даже когда мы рисуем на листе бумаги небольшой кусок прямой линии, то мы предполагаем , что этот лист бумаги – это бесконечная плоскость, и мы можем мысленно раздвинуть видимые границы бумаги и продлить прямую бесконечно долго.

Обозначение прямой

В основном прямую, как и любую другую линию, обозначают при помощи строчной (маленькой) буквы латинского алфавита .

Иногда обозначение прямой линии происходит при помощи двух точек , которые принадлежат (часто говорят просто – лежат на) этой прямой. В этом случае ее обозначают названием этих двух точек.

Например, на рисунке 1 обозначены такие прямые:

  • c
  • KL

Рис. 1 Обозначение прямой линии

Если на одной прямой лежат три и более известных нам точек, то обозначить эту линию можно любой из комбинаций имен любых двух точек .

Рис. 2 Обозначение прямой с несколькими точками

На рисунке 2 видно, что на одной прямой b лежат четыре точки: D , G , H , O . Поэтому данную прямую мы можем назвать любым из этих семи имен: b , DG , DH , DO , GH , GO или HO .

Некоторые свойства прямой

Две точки, лежащие на одной прямой, создают отрезок этой прямой.

Через две любые точки на плоскости можно провести единственную прямую.

Рис. 3 Отрезок на прямой

Две разные прямые могут пересекаться или не пересекаться.

Две прямые пересекаются в том случае, если у них есть общая точка.

И наоборот, если у двух разных прямых нет общей точки, тогда эти прямые не пересекаются .

Рис. 5 Пересечение прямых

На рисунке 5 можно видеть, что прямые l и q пересекаются в точке O , а прямые q и g не пересекаются.

Обозначение пересечения письменно записывается при помощи символа ∩: l ∩ q — прямая l пересекается с прямой q .

Как вам уже известно из этого урока, на рисунках мы можем отображать только часть прямых (поскольку они бесконечные), и что их можно мысленно увеличивать, делать более протяженными. Поэтому, если мысленно продлить прямые l и g , то станет понятно, что они тоже пересекаются.

Взаимное расположение точек и прямой , а также их обозначение, точно такое же, как и у всех линий вообще.

Более подробно об этих и других свойствах прямой написано в уроке геометрии 7 класса.

Луч – это часть прямой, которая начинается в определенной точке и длится бесконечно в одну сторону.

Рис. 6 Деление прямой линии точкой

На рисунке 1 точка O делит прямую a на две части, то есть, на два луча. Один из них, как вы видите, длится бесконечно вправо, а другой – бесконечно влево. Оба они начинаются в одной и той же точке O , которую называют началом луча.

У луча есть начало, но нет конца. От прямой луч отличается тем, что луч бесконечно продолжается только в одну сторону.

Свое название этот математический объект получил по аналогии с лучом света, который имеет начало (источник света), но определенного конца у него нет.

Обозначение луча

Луч, как и прямую, обозначают двумя способами.

Рис. 7 Обозначение луча

На рисунке 2 приведены примеры обозначения луча:

  • a – строчной (маленькая) буква латинского алфавита;
  • OF – точками, расположенными на луче. При этом на первом месте всегда пишут точку начала луча, а на втором – любую точку, которая принадлежит лучу.

Луч имеет второе название – полупрямая.

Два луча, которые лежат на одной прямой, начинаются в одной точке и направлены в разные стороны, называются дополнительными друг другу лучами , поскольку в соединенном виде они формируют одну прямую линию в точке их начала.

Если лучи лежат на одной прямой, начинаются в одной точке и направлены в одну сторону, их называют совпадающие , или говорят, что эти лучи совпадают .

Рис. 8 Дополнительные друг другу и совпадающие лучи

На рисунке 8 видно, что:

  • CB и CH – дополнительные друг другу лучи,
  • BC и BH – совпадающие лучи,
  • HC и HB – совпадающие лучи.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.6 / 5. Количество оценок: 19

Урок 7

общее уравнение Прямой.

неПолное уравнение Первой стеПени. уравнение Прямой в отрезках.

угол между двумя Прямыми.

общее уравнение Прямой.

теорема. в Прямоугольной системе координат оху любая Прямая задается уравнением Первой стеПени ах+ву+с=0 (5), и обратно, уравнение (5) При Произвольных коэффициентах а, в, с (а и в не равны нулю одновременно) оПределяет некоторую Прямую в Прямоугольной системе координат оху.

доказательство. сначала докажем Первое утверждение. если Прямая не ПерПендикулярна оси ох, то, как было Показано в Пункте “уравнение Прямой с угловым коэффициентом”, она оПределяется уравнением Первой стеПени: у=kх+b, т.е. уравнением вида (5), где а=k, в=-1; с=b. если же Прямая ПерПендикулярна оси ох, то все ее точки имеют одинаковые абсциссы, равные величине а отрезка, отсекаемого Прямой на оси ох. уравнение этой Прямой имеет вид х=а, т.е. также является уравнением Первой стеПени вида (5), где а=1, в=0, с=-а. тем самым Первое утверждение доказано.

докажем теПерь обратное утверждение. Пусть дано уравнение (5), Причем хотя бы один из коэффициентов а и в не равен нулю. если в не равно 0, то уравнение (5) можно заПисать в виде: у=-а / вх-с / в. Полагая k=-а / в, b = -с / в, Получаем уравнение у=kх+b вида (2), которое оПределяет Прямую. если в=0, то а не равно 0 и уравнение (5) Принимает вид х=-с / а. обозначив с / а через а, Получим х=а, т.е. уравнение Прямой, ПерПендикулярной оси ох. теорема доказана.

линии, оПределяемые в Прямоугольной системе координат уравнением Первой стеПени, называются линиями Первого Порядка . таким образом, каждая Прямая есть линия Первого Порядка и, обратно, каждая линия Первого Порядка есть Прямая.

уравнение вида ах+ву+с=0 называется общим уравнением Прямой (или Полным уравнением Прямой ). При различных значениях а, в, с оно оПределяет всевозможные Прямые.

Пример 1. Прямая задана общим уравнением 12х-5у-65=0. наПисать ее уравнение с угловым коэффициентом.

решение. выразим из этого уравнения у, Получим: 5у=12х-65. разделим Полученное равенство на 5, Получим искомое уравнение: у=2,4х-13. здесь k=2,4 и b=-13.

уравнение Прямой в отрезках. неПолное уравнение Первой стеПени.

рассмотрим три частных случая, когда уравнение ах+ву+с=0 является неПолным, т.е. какой-то из коэффициентов равен нулю.

1) с=0; уравнение имеет вид ах+ву=0 и оПределяет Прямую, Проходящую через начало координат.

2) в=0 (а не равно 0); уравнение имеет вид ах+с=0 и оПределяет Прямую, Параллельную оси оу. как было Показано в Предыдущей теореме, это уравнение Приводится к виду х=а, где а=-с / а, а – величина отрезка, который отсекает Прямая на оси ох (рисунок выше). в частности, есои а=0, то Прямая совПадает с осью оу. таким образом, уравнение х=0 оПределяет ось ординат.

3) а=0 (в не равно 0); уравнение имеет вид ву+с=0 и оПределяет Прямую, Параллельную оси ох. это устанавливается аналогично Предыдущему случаю. если Положить b=-с / в, то уравнение Примет вид у=b, где b – величина отрезка, который отсекает Прямая на оси оу (см.рисунок) . в частности, если b=0, то Прямая совПадает с осью ох. таким образом, уравнение у=0 оПределяет ось абсцисс.

Пусть теПерь дано уравнение ах+ву+с=0 При условии, что ни один из коэффициентов не равен нулю. введя обозначения а=-с / а, b=-с / в, Получим: (6).

Уравнение (6) называется уравнением Прямой в отрезках . числа а=-с / а, b=-с / в являются величинами отрезков, которые Прямая отсекает на осях координат. эта формула удобна для геометрического Построения Прямой.

Пример 2. Прямая задана уравнением 3х-5у+15=0. составить ее уравнение в отрезках и Построить Прямую.

решение. для данной Прямой уравнение в отрезках имеет вид х/ (-5)+ у / 3=1 (данное уравнение Получим, разделив исходное уравнение на -15). чтобы Построить эту Прямую, отложим на осях координат ох и оу отрезки, величины которых соответственно равны а=-5, b=3, и Проведем Прямую через точки м 1 (-5;0) и м 2 (0;3).

угол между двумя Прямыми.

рассмотрим две Прямые l 1 и l 2 . Пусть уравнение l 1 имеет вид y = k 1 x + b 1 , где k 1 = tga 1 , а уравнение l 2 – вид y = k 2 x + b 2 , где k 2 = tga 2 . далее, Пусть f – угол между Прямыми l 1 и l 2 : 0 .

из геометрических соображений устанавливаем зависимость между углами а 1 , а 2 , f: a 2 =a 1 +f или f=a 2 -a 1 , откуда tgf =tg(a 2 – a 1 )= (tga 2 – tga 1 )/(1+tga 1 tga 2 ) или

tgf = ( k 2 – k 1 ) / (1+ k 1 k 2 ) (7)

формула (7) оПределяет один из углов между Прямыми, другой угол равен П-f.

Пример 3 . Прямые заданы уравнениями у=2х+3 и у=-3х+2. найти угол между этими Прямыми.

решение. очевидно, k 1 =2, k 2 =-3, Поэтому согласно формуле (7) находим: tgf =(-3-2) / (1+(-3)2)= 1. таким образом, один из углов между данными Прямыми равен 45 0 , другой угол 180 0 -45 0 =135 0 .

Автор: Вяликова Мария Владимировна – учитель математики и информатики высшей квалификационной категории МАОУ Пролетарская СОШ Новгородского района Новгородской области

Математика. 6 класс

Конспект урока

Декартова система координат на плоскости

Перечень рассматриваемых вопросов:

  • прямоугольная система координат;
  • координатная плоскость;
  • координатная ось, координата точки;
  • изображение точек с действительными координатами на плоскости.

Координатная плоскость. Зададим на плоскости две оси координат, расположив их под прямым углом. Координатные оси пересекаются в точке, являющейся началом отсчёта для каждой из них.

Ось х называют осью абсцисс – расположена горизонтально, направлена вправо. Ось у называют осью ординат – расположена вертикально, направлена вверх.

Оси координат разделяют плоскость на 4 угла, которые называются координатными четвертями.

Координаты точки М (х; у), где х – абсцисса, у – ордината точки.

Обязательная литература:

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Зададим на плоскости две оси координат, расположив их под прямым углом. Единичные отрезки осей возьмём равными друг другу.

Ось х называют осью абсцисс – расположена горизонтально, направлена вправо. Ось у называют осью ординат – расположена вертикально, направлена вверх.

Положительное направление на осях указывается стрелкой.

Точку пересечения осей называют началом координат.

Оси взаимно перпендикулярны, поэтому заданную таким образом систему координат называют прямоугольной.

Оси координат разделяют плоскость на 4 угла – координатные четверти. Обозначают римскими цифрами как показано на рисунке.

Одним из первых, кто начал широко использовать прямоугольную систему координат в своих исследованиях, был французский философ и математик Рене Декарт, поэтому её часто называют декартовой системой координат.

Пусть A – произвольная точка координатной плоскости. Проведём через точку A прямые, параллельные осям координат. Прямая, параллельная оси y, пересечёт ось x в точке A1, а прямая, параллельная оси x, пересечёт ось y в точке A2. Координату точки A1 на оси x называют абсциссой точки A. Координату точки A2 на оси y называют ординатой точки A. Абсциссу x и ординату y точки A называют координатами точки A.

Координаты точки, записывают в круглых скобках рядом с буквой, обозначающей эту точку: М (х; у).

х – первая координата

у – вторая координата

Поменять местами х и у нельзя – получится другая точка.

Поэтому пару координат (x; y) точки A называют упорядоченной парой чисел.

Если на плоскости задана прямоугольная система координат хOу, то:

– каждой точке плоскости поставлена в соответствие упорядоченная пара чисел (координаты точки);

– разным точкам плоскости соответствуют разные упорядоченные пары чисел;

– каждая упорядоченная пара чисел соответствует одной точке плоскости.

То есть установлено взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел.

Алгоритм построения точки на координатной плоскости

Построим точку А(3; 6).

Введём прямоугольную систему координат.

На каждой оси откладываем заданные координаты х и у (x > 0 и y > 0, значит, точка A расположена в I координатной четверти).

Проводим перпендикуляры к оси х и оси у.

Точка их пересечения – искомая точка.

В(– 4; 5) – имеет отрицательную абсциссу и положительную ординату, значит, расположена во II четверти.

С(– 8; – 4) – имеет обе отрицательные координаты, значит, расположена в III четверти.

D(9; – 2) – имеет положительную абсциссу и отрицательную ординату, значит, расположена в IV четверти.

F(6; 0), E(– 5; 0) – точки лежат на оси абсцисс.

H(0; – 5) – точка лежит на оси ординат.

O(0; 0) – начальная точка системы координат.

В географии положение объектов на земной поверхности определяется двумя координатами: широтой и долготой.

В концертном зале своё кресло можно найти по номеру ряда и места.

В шахматах каждой клетке соответствует буква столбца и цифра ряда.

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте

Построить прямую АВ, если А(3; 2), В(– 3; – 4).

1) координаты точек пересечения прямой AB с осями;

2) координаты середины отрезка AB.

Шаг 1. Строим точки А и В по их координатам.

Шаг 2. Проводим прямую АВ.

Шаг 3. Находим точки пересечения с осями координат, обозначаем их буквами M и N. Определяем их координаты:

Шаг 4. Находим по графику середину отрезка АВ, это точка N (0; – 1).

Ответ: координаты точек пересечения прямой AB с осями: М (1; 0), N (0; – 1), координаты середины отрезка AB: N (0; – 1).

Тип 2. Нарисуйте фигуру, последовательно соединяя точки

(0; 4), (– 2; – 2), (3; 2), (– 3; 2), (2; – 4), (0; 4).

Читайте также:
Определитель матрицы свойства, методы и способы вычисления, разложение
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: