Область значения функции как определить и найти, примеры решения

Область значения функций в задачах ЕГЭ

Разделы: Математика

Понятие функции и всё, что с ним связано, относится к традиционно сложным, не до конца понятым. Особым камнем преткновения при изучении функции и подготовке к ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью её значений.
И если задачи на нахождение области определения функции учащимся удаётся освоить, то задачи на нахождение множества значений функции вызывают у них немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал, рассмотрены способы решения задач на нахождение множеств значений функции, подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к выпускным и вступительным экзаменам, при изучении темы “Область значения функции” на факультативных занятиях элективных курсах по математике.

I. Определение области значений функции.

Областью (множеством) значений E(у) функции y = f(x) называется множество таких чисел y, для каждого из которых найдётся такое число x, что: f(x) = y.

Напомним области значений основных элементарных функций.

Функция Множество значений
y = kx+ b E(y) = (-∞;+∞)
y = x 2n E(y) = [0;+∞)
y = x 2n +1 E(y) = (-∞;+∞)
y = k/x E(y) = (-∞;0)u(0;+∞)
y = x 1/2n E(y) = [0;+∞)
y = x 1/2n+1 E(y) = (-∞;+∞)
y = a x E(y) = (0;+∞)
y = logax E(y) = (-∞;+∞)
y = sin x E(y) = [-1;1]
y = cos x E(y) = [-1;1]
y = tg x E(y) = (-∞;+∞)
y = ctg x E(y) = (-∞;+∞)
y = arcsin x E(y) = [-π/2 ; π/2]
y = arcos x E(y) = [0; π]
y = arctg x E(y) = (-π/2 ; π/2)
y = arcctg x E(y) = (0; π)

Заметим также, что областью значения всякого многочлена чётной степени является промежуток [m;+∞) , где m – наименьшее значение этого многочлена, либо промежуток

(-∞;n] , где n – наибольшее значение этого многочлена.

II. Свойства функций, используемые при нахождении области значений функции

Для успешного нахождения множества значений функции надо хорошо знать свойства основных элементарных функций, особенно их области определения, области значений и характер монотонности. Приведём свойства непрерывных, монотонных дифференцируемых функций, наиболее часто используемые при нахождении множества значений функций.

  1. Если функция f(x) непрерывна и возрастает на отрезке [a;b], то множество значений функции на этом отрезке есть отрезок [f(a),f(b)]. При этом каждое значение А [f(a),f(b)] функция принимает ровно при одном значении x принадлежит [a,b], т.е уравнение f(x) = А имеет единственный корень на отрезке [a,b]. Если же f(x) – непрерывная и убывающая на отрезке [a,b] функция, то её множество значений на [a,b] есть отрезок [f(a),f(b)].
  2. Если функция f(x) непрерывна на отрезке [a,b] и m = min f(x), M = max f(x) – её наименьшее и наибольшее значение на этом отрезке, то множество значений f(x) на [a,b] есть отрезок [m;M].
  3. Если функция непрерывна на отрезке [a,b] и дифференцируема (имеет производную) в интервале (a,b), то наибольшее и наименьшее значения функции на отрезке [a,b] существуют и достигаются либо на концах отрезка, либо в критических точках функции, расположенных на отрезке

Свойства 2 и 3, как правило, используются вместе свойством элементарной функции быть непрерывной в своей области определения. При этом наиболее простое и краткое решение задачи на нахождение множества значений функции достигается на основании свойства 1, если несложными методами удаётся определить монотонность функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение множеств значений функции следует по мере надобности проверять и использовать следующие свойства функции:

  • непрерывность;
  • монотонность;
  • дифференцируемость;
  • чётность, нечётность, периодичность и т.д.

Несложные задачи на нахождение множества значений функции в большинстве своём ориентированны:

а) на использование простейших оценок и ограничений: (2 х >0, -1≤sinx?1, 0≤cos 2 x?1 и т.д.);

б) на выделение полного квадрата: х 2 – 4х + 7 = (х – 2) 2 + 3;

в) на преобразование тригонометрических выражений: 2sin 2 x – 3cos 2 x + 4 = 5sin 2 x +1;

г) использование монотонности функции x 1/3 + 2 x-1 возрастает на R.

III. Рассмотрим способы нахождения областей значений функций.

а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.

Раскроем суть этих методов на конкретных примерах.

Пример 1. Найдите область значений E(y) функции y = log0,5(4 – 2·3 x – 9 x ).

Решим этот пример методом последовательного нахождения значений сложных аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

y = log0,5(5 – (1 + 2·3 x – 3 2x )) = log0,5(5 – (3 x + 1) 2 )

И последовательно найдём множества значений её сложных аргументов:

E(3 x ) = (0;+∞), E(3 x + 1) = (1;+∞), E(-(3 x + 1) 2 = (-∞;-1), E(5 – (3 x +1) 2 ) = (-∞;4)

Обозначим t = 5 – (3 x +1) 2 , где -∞≤t≤4. Тем самым задача сводится к нахождению множества значений функции y = log0,5t на луче (-∞;4). Так как функция y = log0,5t определена лишь при, то её множество значений на луче (-∞;4) совпадает со множеством значений функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t = 4 принимает значение -2, поэтому E(y) = (-2, +∞).

Пример 2. Найдите область значений функции

y = cos7x + 5cosx

Решим этот пример методом оценок, суть которого состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0 функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она принимает все значения с -6 до 6 включительно, и только их, так как в силу неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) = [-6;6].

Читайте также:
Распределительное свойство умножения основные свойства закона

Пример 3. Найдите область значений E(f) функции f(x) = cos2x + 2cosx.

По формуле косинуса двойного угла преобразуем функция f(x) = 2cos 2 x + 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t 2 + 2t – 1. Так как E(cosx) =

[-1;1], то область значений функции f(x) совпадает со множеством значений функции g(t) = 2t 2 + 2t – 1 на отрезке [-1;1], которое найдём графическим методом. Построив график функции y = 2t 2 + 2t – 1 = 2(t + 0,5) 2 – 1,5 на промежутке [-1;1], находим E(f) = [-1,5; 3].

Замечание – к нахождению множества значений функции сводятся многие задачи с параметром, связанные, в основном, с разрешимостью и числом решений уравнения и неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда, когда

a E(f) Аналогично, уравнение f(x) = а имеет хотя бы один корень, расположенный на некотором промежутке Х, или не имеет ни одного корня на этом промежутке тогда и только тогда, когда а принадлежит или не принадлежит множеству значений функции f(x) на промежутке Х. Также исследуются с привлечением множества значений функции и неравенства f(x)≠ а, f(x)>а и т.д. В частности, f(x)≠ а для всех допустимых значений х, если a E(f)

Пример 4. При каких значениях параметра а уравнение (x + 5) 1/2 = a(x 2 + 4) имеет единственный корень на отрезке [-4;-1].

Запишем уравнение в виде (x + 5) 1/2 / (x 2 + 4) = a . Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только тогда, когда а принадлежит множеству значений функции f(x) = (x + 5) 1/2 / (x 2 + 4) на отрезке [-4;-1]. Найдём это множество, используя свойство непрерывности и монотонности функции.

На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна, поэтому функция g(x) = 1/(x 2 + 4) непрерывна и возрастает на этом отрезке, так как при делении на положительную функцию характер монотонности функции меняется на противоположный. Функция h(x) = (x + 5) 1/2 непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция f(x)=g(x)·h(x), как произведение двух непрерывных, возрастающих и положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому её множество значений на [-4;-1] есть отрезок [f(-4); f(-1)] = [0,05; 0,4]. Следовательно, уравнение имеет решение на отрезке [-4;-1], причём единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4

Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х равносильна принадлежности значений параметра а множеству значений функции f(x) на Х. Следовательно, множество значений функции f(x) на промежутке Х совпадает с множеством значений параметра а, для которых уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В частности, область значений E(f) функции f(x)совпадает с множеством значений параметра а, для которых уравнение f(x) = a имеет хотя бы один корень.

Пример 5. Найдите область значений E(f) функции

Решим пример методом введения параметра, согласно которому E(f) совпадает с множеством значений параметра а, для которых уравнение

имеет хотя бы один корень.

При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом при неизвестной х , поэтому имеет решение. При а≠2 уравнение является квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант

Так как точка а = 2 принадлежит отрезку

то искомым множеством значений параметра а, значит, и областью значений E(f) будет весь отрезок.

Как непосредственное развитие метода введения параметра при нахождении множества значений функции, можно рассматривать метод обратной функции, для нахождения которой надо решить относительно х уравнение f(x)= y, считая y параметром. Если это уравнение имеет единственное решение x =g(y), то область значений E(f) исходной функции f(x) совпадает с областью определения D(g) обратной функции g(y). Если же уравнение f(x)= y имеет несколько решений x =g1(y), x =g2(y) и т.д., то E(f) равна объединению областей определений функции g1(y), g2(y) и т.д.

Пример 6. Найдите область значений E(y) функции y = 5 2/(1-3x).

найдём обратную функцию x = log3((log5y – 2)/(log5y)) и её область определения D(x):

Так как уравнения относительно х имеет единственное решение, то

E(y) = D(x) = (0; 1)(25;+ ∞ ).

Если область определения функции состоит из нескольких промежутков или функция на разных промежутках задана разными формулами, то для нахождения области значений функции надо найти множества значений функции на каждом промежутке и взять их объединение.

Пример 7. Найдите области значений f(x) и f(f(x)), где

Найдём сначала множество значений функции f(x) на луче (-∞;1], где она совпадает с выражением 4 x + 9·4 -x + 3. Обозначим t = 4 x . Тогда f(x) = t + 9/t + 3, где 0 2 . На промежутке (0;4] производная g’(t) определена и обращается там в нуль при t = 3. При 0 1 функция f(x) совпадает с выражением 2cos(x-1) 1/2 + 7. Квадратный корень (x-1) 1/2 при x > 1 определён и принимает все положительные значения, поэтому cos(x-1) 1/2 принимает все значения от -1 до 1 включительно, а выражение 2cos(x-1) 1/2 + 7 принимает все значения от 5 до 9 включительно. Следовательно, множеством значений функции f(x) на луче (1;+∞) будет отрезок [5;9].

Теперь, объединив промежутки [9;+∞) и [5;9] – множества значений функции f(f(x)), обозначим t = f(x). Тогда f(f(x)) = f(t), где При указанных t функция f(t) = 2cos(x-1) 1/2 + 7 и она снова принимает все значения от 5 до 9 включительно, т.е. область значений E(fІ) = E(f(f(x))) = [5;9].

Аналогично, обозначив z = f(f(x)), можно найти область значений E(f 3 ) функции f(f(f(x))) = f(z), где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f 3 ) = [2cos8 1/2 + 7; 2cos2 + 7].

Наиболее универсальным методом нахождения множества значений функции является использование наибольшего и наименьшего значений функции на заданном промежутке.

Пример 8. При каких значениях параметра р неравенcтво 8 x –р ≠ 2 x+1 – 2 x выполняется для всех -1 ≤ x x , запишем неравенство в виде р ≠ t 3 – 2t 2 + t. Так как t = 2 x – непрерывная возрастающая функция на R, то при -1 ≤ x -1 ≤ t 2 ↔

0,5 ≤ t 3 – 2t 2 + t при 0,5 ≤ t 2 – 4t + 1. Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке [0,5;4]. Из уравнения f’(t) = 0 найдём критические точки функции t = 1/3, t = 1, первая из которых не принадлежит отрезку [0,5;4], а вторая принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение функции f(t) на отрезке [0,5;4]. Тогда f(t), как непрерывная функция, принимает на отрезке [0,5;4] все значения от 0 до 36 включительно, причём значение 36 принимает только при t = 4, поэтому при 0,5 ≤ t

Читайте также:
Коллинеарные векторы - определение, свойства, обозначения

Данная тема имеет практическое значение. В школьном курсе математики изучается тема “Область значения функции”. Такие задачи обязательно содержатся в заданиях различных математических тестов, в частности в заданиях единого государственного экзамена.
Результаты работы можно использовать на уроках и дополнительных занятиях при подготовке учащихся выпускным и вступительным экзаменам, при самостоятельной подготовке учащихся по данной теме.

  1. Сильвестров В.В. Множество значений функции: Учебное пособие.– Чебоксары, 2004.
  2. Амелькин В.В., Рабцевич В.Л. Задачи с параметрами.– Минск, 1996.
  3. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. – Москва – Харьков, 1998.
  4. Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с параметрами: Учебное пособие. 4-е изд., доп., перераб. – М., 2006.
  5. Сильвестров В.В. Неравенства с параметром на едином государственном экзамене // Математика для школьников. 2008. № 2.

Область допустимых значений функции

О чем эта статья:

Допустимые и недопустимые значения переменных

В 7 классе заканчивается математика и начинается ее-величество-алгебра. Первым делом школьники изучают выражения с переменными.

Мы уже знаем, что математика состоит из выражений — буквенных и числовых. Каждому выражению, в котором есть переменная, соответствует область допустимых значений (ОДЗ). Если игнорировать ОДЗ, то в результате решения можно получить неверный ответ. Получается, чтобы быстро получить верный ответ, нужно всегда учитывать область допустимых значений.

Чтобы дать верное определение области допустимых значений, разберемся, что такое допустимые и недопустимые значения переменной.

Рассмотрим все необходимые определения, связанные с допустимыми и недопустимыми значениями переменной.

Выражение с переменными — это буквенное выражение, в котором буквы обозначают величины, принимающие различные значения.

Значение числового выражения — это число, которое получается после выполнения всех действий в числовом выражении.

Выражение с переменными имеет смысл при данных значениях переменных, если при этих значениях переменных можно вычислить его значение.

Выражение с переменными не имеет смысла при данных значениях переменных, если при этих значениях переменных нельзя вычислить его значение.

Теперь, опираясь на данные определения, мы можем сформулировать, что такое допустимые и недопустимые значения переменной.

Допустимые значения переменных — это значения переменных, при которых выражение имеет смысл.

Если при переменных выражение не имеет смысла, то значения таких переменных называют недопустимыми.

В выражении может быть больше одной переменной, поэтому допустимых и недопустимых значений может быть больше одного.

Пример 1

Рассмотрим выражение

В выражении три переменные (a, b, c).

Запишем значения переменных в виде: a = 1, b = 1, c = 2.

Такие значения переменных являются допустимыми, поскольку при подстановке этих значений в выражение, мы легко можем найти ответ:

Таким же образом можем выяснить, какие значения переменных — недопустимые.

Подставим значения переменных в выражение

На ноль делить нельзя.

Что такое ОДЗ

ОДЗ — это невидимый инструмент при решении любого выражении с переменной. Чаще всего, ОДЗ не отображают графически, но всегда «держат в уме».

Область допустимых значений (ОДЗ) — это множество всех допустимых значений переменных для данного выражения.

Пример 2

Рассмотрим выражение

ОДЗ такого выражения выглядит следующим образом: ( – ∞; 3) ∪ (3; +∞).

Читать запись нужно вот так:
Область допустимых значений переменной x для выражения — это числовое множество ( – ∞; 3) ∪ (3; +∞).

Пример 3
Рассмотрим выражение

ОДЗ такого выражения будет выглядеть вот так: b ≠ c; a — любое число.

Такая запись означает, что область допустимых значений переменных b, c и a = это все значения переменных, при которых соблюдаются условия b ≠ c; a — любое число.

Как найти ОДЗ: примеры решения

Найти ОДЗ — это значит, что нужно указать все допустимые значения переменных для выражения. Часто, чтобы найти ОДЗ, нужно выполнить преобразование выражения.

Чтобы быстро и верно определять ОДЗ, запомните условия, при которых значение выражения не может быть найдено.

Мы не можем вычислить значение выражения, если:

  • требуется извлечение квадратного корня из отрицательного числа
  • присутствует деление на ноль (математическое правило номер раз: никогда не делите на ноль)
  • отрицательный целый показатель в степени при отрицательном числе
  • требуется вычисление логарифма отрицательного числа
  • область определения тангенса = π * k, где k ∈ z
  • область определения котангенса π * k, где k ∈ z
  • нахождение арксинуса и арккосинуса числа, выходящего за пределы числового промежутка [- 1, 1].

Теперь, приступая к поиску ОДЗ, вы можете сверять выражение по всем этим пунктам.

Давайте потренируемся находить ОДЗ.

Пример 4

Найдем область допустимых значений переменной выражения a 3 + 4 * a * b − 6.

В куб возводится любое число. Ограничений при вычитании и сложении нет. Это значит, что мы можем вычислить значение выражения a 3 + 4 * a * b − 6 при любых значениях переменной.

ОДЗ переменных a и b — это множество таких пар допустимых значений (a, b), где a — любое число и b — любое число.

Ответ: (a и b), где a — любое число и b — любое число.

Пример 5

Найдем область допустимых значений (ОДЗ) переменной выражения

Здесь нужно обратить внимание на наличие нуля в знаменатели дроби. Одним из условий, при котором вычисление значения выражения невозможно явлется наличие деления на ноль.

Это значит, что мы может сказать, что ОДЗ переменной a в выражении — пустое множество.

Пустое множество изображается в виде вот такого символа Ø.

Пример 6

Найдем область допустимых значений (ОДЗ) переменных в выражении

Если есть квадратный корень, то нам нужно следить за тем, чтобы под знаком корня не было отрицательного числа. Это значит, что при подстановке значений a и b должны быть условия, при которых a + 3 * b + 5 ≥ 0.

Читайте также:
Обыкновенные дроби - основное свойство, примеры, действия

Ответ: ОДЗ переменных a и b — это множество всех пар, при которых a + 3 * b + 5 ≥ 0.

Пример 7

Найдем ОДЗ переменной a в выражении

Прежде всего, нам нужно подобрать такое условие, при котором в знаменателе дроби не будет ноля —

Мы знаем, что выражение под знаком корня должно быть положительным. Это дает нам второе условие: a + 1 ≥ 0.

Мы не можем вычислить логарифм отрицательного выражения. Получаем третье условие: a 2 + 2 > 0.

Выражении в основании логарифма не должно быть отрицательным и не должно равняться единице. Получаем условие 4: a + 6 > 0.

Условие 5: a + 6 ≠ 1.

Определим ОДЗ, опираясь на все означенные условия:
a +1 – 1 0.

Ответ: ОДЗ: [ – 1; 0) ∪ (0; +∞)

Как видите, записывая ОДЗ, мы ставим квадратные и круглые скобки.

Запомните

  • Если число входит в ОДЗ, то около числа ставим квадратные скобки.
  • Если число не входит в ОДЗ, то около него ставятся круглые скобки.

Например, если х > 6, но х

Зачем учитывать ОДЗ при преобразовании выражения

Иногда выражение просто невозможно решить, если не выполнить ряд тождественных преобразований. К ним относятся: перестановки, раскрытие скобок, группировка, вынесение общего множителя за скобки, приведение подобных слагаемых.

Кроме того, что видов таких преобразований довольно много: нужно понимать, в каких случаях какое преобразование возможно. В этом может помочь определение ОДЗ.

Тождественное преобразование может:

  • расширить ОДЗ
  • никак не повлиять на ОДЗ
  • сузить ОДЗ

Рассмотрим каждый случай в отдельности.

Пример 8

Рассмотрим выражение a + 4/a – 4/a

Поскольку мы должны следить за тем, чтобы в выражении не возникало деление ноль, определяем условие a ≠ 0.

Это условие отвечает множеству (−∞ ; 0) ∪ (0 ; +∞).

В выражении есть подобные слагаемые, если привести подобные слагаемые, то мы получаем выражение вида a.

ОДЗ для a — это R — множество всех вещественных чисел.

Преобразование расширило ОДЗ — добавился ноль.

Пример 9

Рассмотрим выражение a 2 + a + 4 * a

ОДЗ a для этого выражения — множество R.

В выражении есть подобные слагаемые, выполним тождественное преобразование.

После приведения подобных слагаемых выражение приняло вид a 2 + 5 * a

ОДЗ переменной a для этого выражения — множество R.

Это значит, что тождественное преобразование никак не повлияло на ОДЗ.

Пример 10

Рассмотрим выражение

ОДЗ a определяется неравенством (a – 1) * (a – 4) ≥ 0.

Решить такое неравенство можно методом интервалов, что дает нам ОДЗ (−∞; 1] ∪ [4 ; +∞).

Затем выполним преобразование исходного выражения по свойству корней: корень произведения = произведению корней.

Приведем выражение к виду

ОДЗ переменной a для этого выражения определяется неравенствами:
a – 1 ≥ 0
a – 4 ≥ 0

Решив систему линейных неравенств, получаем множество [4; + ∞).

Отсюда видно, что тождественные преобразования сузили ОДЗ.
От (−∞; 1] ∪ [4 ; +∞) до [4; + ∞).

Решив преобразовать выражение, внимательно следите за тем, чтобы не допустить сужение ОДЗ.

Запомните, что выполняя преобразование, следует выбирать такие, которые не изменят ОДЗ.

Область значений функции (множество значений функции). Необходимые понятия и примеры нахождения

Зачастую в рамках решения задач нам приходится искать множество значений функции на области определения или отрезке. Например, это нужно делать при решении разных типов неравенств, оценках выражений и др.

В рамках этого материала мы расскажем, что из себя представляет область значений функции, приведем основные методы, которыми ее можно вычислить, и разберем задачи различной степени сложности. Для наглядности отдельные положения проиллюстрированы графиками. Прочитав эту статью, вы получите исчерпывающее представление об области значений функции.

Начнем с базовых определений.

Множество значений функции y = f ( x ) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x ∈ X .

Область значений функции y = f ( x ) – это множество всех ее значений, которые она может принять при переборе значений x из области x ∈ ( f ) .

Область значений некоторой функции принято обозначать E ( f ) .

Обратите внимание, что понятие множества значений функции не всегда тождественно области ее значений. Эти понятия будут равнозначны только в том случае, если интервал значений x при нахождении множества значений совпадет с областью определения функции.

Важно также различать область значений и область допустимых значений переменной x для выражения в правой части y = f ( x ) . Область допустимых значений x для выражения f ( x ) и будет областью определения данной функции.

Ниже приводится иллюстрация, на которой показаны некоторые примеры. Синие линии – это графики функций, красные – асимптоты, рыжие точки и линии на оси ординат – это области значений функции.

Очевидно, что область значений функции можно получить при проецировании графика функции на ось O y . При этом она может представлять собой как одно число, так и множество чисел, отрезок, интервал, открытый луч, объединение числовых промежутков и др.

Рассмотрим основные способы нахождения области значений функции.

Начнем с определения множества значений непрерывной функции y = f ( x ) на некотором отрезке, обозначенном [ a ; b ] . Мы знаем, что функция, непрерывная на некотором отрезке, достигает на нем своего минимума и максимума, то есть наибольшего m a x x ∈ a ; b f ( x ) и наименьшего значения m i n x ∈ a ; b f ( x ) . Значит, у нас получится отрезок m i n x ∈ a ; b f ( x ) ; m a x x ∈ a ; b f ( x ) , в котором и будут находиться множества значений исходной функции. Тогда все, что нам нужно сделать, – это найти на этом отрезке указанные точки минимума и максимума.

Возьмем задачу, в которой нужно определить область значений арксинуса.

Условие: найдите область значений y = a r c sin x .

Решение

В общем случае область определения арксинуса располагается на отрезке [ – 1 ; 1 ] . Нам надо определить наибольшее и наименьшее значение указанной функции на нем.

y ‘ = a r c sin x ‘ = 1 1 – x 2

Мы знаем, что производная функции будет положительной для всех значений x , расположенных в интервале [ – 1 ; 1 ] , то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x , равном – 1 , а самое большое – при x , равном 1 .

m i n x ∈ – 1 ; 1 a r c sin x = a r c sin – 1 = – π 2 m a x x ∈ – 1 ; 1 a r c sin x = a r c sin 1 = π 2

Таким образом, область значений функции арксинус будет равна E ( a r c sin x ) = – π 2 ; π 2 .

Ответ: E ( a r c sin x ) = – π 2 ; π 2

Условие: вычислите область значений y = x 4 – 5 x 3 + 6 x 2 на заданном отрезке [ 1 ; 4 ] .

Читайте также:
Число сочетаний основные свойства, применение математических формул

Решение

Все, что нам нужно сделать, – это вычислить наибольшее и наименьшее значение функции в заданном интервале.

Для определения точек экстремума надо произвести следующие вычисления:

y ‘ = x 4 – 5 x 3 + 6 x 2 ‘ = 4 x 3 + 15 x 2 + 12 x = x 4 x 2 – 15 x + 12 y ‘ = 0 ⇔ x ( 4 x 2 – 15 x + 12 ) = 0 x 1 = 0 ∉ 1 ; 4 и л и 4 x 2 – 15 x + 12 = 0 D = – 15 2 – 4 · 4 · 12 = 33 x 2 = 15 – 33 8 ≈ 1 . 16 ∈ 1 ; 4 ; x 3 = 15 + 33 8 ≈ 2 . 59 ∈ 1 ; 4

Теперь найдем значения заданной функции в концах отрезка и точках x 2 = 15 – 33 8 ; x 3 = 15 + 33 8 :

y ( 1 ) = 1 4 – 5 · 1 3 + 6 · 1 2 = 2 y 15 – 33 8 = 15 – 33 8 4 – 5 · 15 – 33 8 3 + 6 · 15 – 33 8 2 = = 117 + 165 33 512 ≈ 2 . 08 y 15 + 33 8 = 15 + 33 8 4 – 5 · 15 + 33 8 3 + 6 · 15 + 33 8 2 = = 117 – 165 33 512 ≈ – 1 . 62 y ( 4 ) = 4 4 – 5 · 4 3 + 6 · 4 2 = 32

Значит, множество значений функции будет определяться отрезком 117 – 165 33 512 ; 32 .

Ответ: 117 – 165 33 512 ; 32 .

Перейдем к нахождению множества значений непрерывной функции y = f ( x ) в промежутках ( a ; b ) , причем a ; + ∞ , – ∞ ; b , – ∞ ; + ∞ .

Начнем с определения наибольшей и наименьшей точки, а также промежутков возрастания и убывания на заданном интервале. После этого нам нужно будет вычислить односторонние пределы в концах интервала и/или пределы на бесконечности. Иными словами, нам надо определить поведении функции в заданных условиях. Для этого у нас есть все необходимые данные.

Условие: вычислите область значений функции y = 1 x 2 – 4 на интервале ( – 2 ; 2 ) .

Решение

Определяем наибольшее и наименьшее значение функции на заданном отрезке

y ‘ = 1 x 2 – 4 ‘ = – 2 x ( x 2 – 4 ) 2 y ‘ = 0 ⇔ – 2 x ( x 2 – 4 ) 2 = 0 ⇔ x = 0 ∈ ( – 2 ; 2 )

У нас получилось максимальное значение, равное 0 , поскольку именно в этой точке происходит перемена знака функции и график переходит к убыванию. См. на иллюстрацию:

То есть y ( 0 ) = 1 0 2 – 4 = – 1 4 будет максимальным значений функции.

Теперь определим поведение функции при таком x, который стремится к – 2 с правой стороны и к + 2 с левой стороны. Иными словами, найдем односторонние пределы:

lim x → – 2 + 0 1 x 2 – 4 = lim x → – 2 + 0 1 ( x – 2 ) ( x + 2 ) = = 1 – 2 + 0 – 2 – 2 + 0 + 2 = – 1 4 · 1 + 0 = – ∞ lim x → 2 + 0 1 x 2 – 4 = lim x → 2 + 0 1 ( x – 2 ) ( x + 2 ) = = 1 2 – 0 – 2 2 – 0 + 2 = 1 4 · 1 – 0 = – ∞

У нас получилось, что значения функции будут возрастать от минус бесконечности до – 1 4 тогда, когда аргумент изменяется в пределах от – 2 до 0 . А когда аргумент меняется от 0 до 2 , значения функции убывают к минус бесконечности. Следовательно, множеством значений заданной функции на нужном нам интервале будет ( – ∞ ; – 1 4 ] .

Ответ: ( – ∞ ; – 1 4 ] .

Условие: укажите множество значений y = t g x на заданном интервале – π 2 ; π 2 .

Решение

Нам известно, что в общем случае производная тангенса в – π 2 ; π 2 будет положительной, то есть функция будет возрастать. Теперь определим, как ведет себя функция в заданных границах:

lim x → π 2 + 0 t g x = t g – π 2 + 0 = – ∞ lim x → π 2 – 0 t g x = t g π 2 – 0 = + ∞

Мы получили рост значений функции от минус бесконечности к плюс бесконечности при изменении аргумента от – π 2 до π 2 ,и можно сказать, что множеством решений данной функции будет множество всех действительных чисел.

Ответ: – ∞ ; + ∞ .

Условие: определите, какова область значений функции натурального логарифма y = ln x .

Решение

Нам известно, что данная функция является определенной при положительных значениях аргумента D ( y ) = 0 ; + ∞ . Производная на заданном интервале будет положительной: y ‘ = ln x ‘ = 1 x . Значит, на нем происходит возрастание функции. Далее нам нужно определить односторонний предел для того случая, когда аргумент стремится к 0 (в правой части), и когда x стремится к бесконечности:

lim x → 0 + 0 ln x = ln ( 0 + 0 ) = – ∞ lim x → ∞ ln x = ln + ∞ = + ∞

Мы получили, что значения функции будут возрастать от минус бесконечности до плюс бесконечности при изменении значений x от нуля до плюс бесконечности. Значит, множество всех действительных чисел – это и есть область значений функции натурального логарифма.

Ответ: множество всех действительных чисел – область значений функции натурального логарифма.

Условие: определите, какова область значений функции y = 9 x 2 + 1 .

Решение

Данная функция является определенной при условии, что x – действительное число. Вычислим наибольшие и наименьшие значения функции, а также промежутки ее возрастания и убывания:

y ‘ = 9 x 2 + 1 ‘ = – 18 x ( x 2 + 1 ) 2 y ‘ = 0 ⇔ x = 0 y ‘ ≤ 0 ⇔ x ≥ 0 y ‘ ≥ 0 ⇔ x ≤ 0

В итоге мы определили, что данная функция будет убывать, если x ≥ 0 ; возрастать, если x ≤ 0 ; она имеет точку максимума y ( 0 ) = 9 0 2 + 1 = 9 при переменной, равной 0 .

Посмотрим, как же ведет себя функция на бесконечности:

lim x → – ∞ 9 x 2 + 1 = 9 – ∞ 2 + 1 = 9 · 1 + ∞ = + 0 lim x → + ∞ 9 x 2 + 1 = 9 + ∞ 2 + 1 = 9 · 1 + ∞ = + 0

Из записи видно, что значения функции в этом случае будут асимптотически приближаться к 0.

Подведем итоги: когда аргумент изменяется от минус бесконечности до нуля, то значения функции возрастают от 0 до 9 . Когда значения аргумента меняются от 0 до плюс бесконечности, соответствующие значения функции будут убывать от 9 до 0 . Мы отобразили это на рисунке:

На нем видно, что областью значений функции будет интервал E ( y ) = ( 0 ; 9 ]

Ответ: E ( y ) = ( 0 ; 9 ]

Если нам надо определить множество значений функции y = f ( x ) на промежутках [ a ; b ) , ( a ; b ] , [ a ; + ∞ ) , ( – ∞ ; b ] , то нам понадобится провести точно такие же исследования. Эти случаи мы пока не будем разбирать: далее они нам еще встретятся в задачах.

А как быть в случае, если область определения некоторой функции представляет из себя объединение нескольких промежутков? Тогда нам надо вычислить множества значений на каждом из этих промежутков и объединить их.

Условие: определите, какова будет область значений y = x x – 2 .

Решение

Поскольку знаменатель функции не должен быть обращен в 0 , то D ( y ) = – ∞ ; 2 ∪ 2 ; + ∞ .

Начнем с определения множества значений функции на первом отрезке – ∞ ; 2 , который представляет из себя открытый луч. Мы знаем, что функция на нем будет убывать, то есть производная данной функции будет отрицательной.

lim x → 2 – 0 x x – 2 = 2 – 0 2 – 0 – 2 = 2 – 0 = – ∞ lim x → – ∞ x x – 2 = lim x → – ∞ x – 2 + 2 x – 2 = lim x → – ∞ 1 + 2 x – 2 = 1 + 2 – ∞ – 2 = 1 – 0

Читайте также:
Линейная функция - определение, основные свойства, виды, формула

Тогда в тех случаях, когда аргумент изменяется по направлению к минус бесконечности, значения функции будут асимптотически приближаться к 1 . Если же значения x меняются от минус бесконечности до 2 , то значения будут убывать от 1 до минус бесконечности, т.е. функция на этом отрезке примет значения из интервала – ∞ ; 1 . Единицу мы исключаем из наших рассуждений, поскольку значения функции ее не достигают, а лишь асимптотически приближаются к ней.

Для открытого луча 2 ; + ∞ производим точно такие же действия. Функция на нем также является убывающей:

lim x → 2 + 0 x x – 2 = 2 + 0 2 + 0 – 2 = 2 + 0 = + ∞ lim x → + ∞ x x – 2 = lim x → + ∞ x – 2 + 2 x – 2 = lim x → + ∞ 1 + 2 x – 2 = 1 + 2 + ∞ – 2 = 1 + 0

Значения функции на данном отрезке определяются множеством 1 ; + ∞ . Значит, нужная нам область значений функции, заданной в условии, будет объединением множеств – ∞ ; 1 и 1 ; + ∞ .

Ответ: E ( y ) = – ∞ ; 1 ∪ 1 ; + ∞ .

Это можно увидеть на графике:

Особый случай – периодические функции. Их область значения совпадает с множеством значений на том промежутке, который отвечает периоду этой функции.

Условие: определите область значений синуса y = sin x .

Решение

Синус относится к периодической функции, а его период составляет 2 пи. Берем отрезок 0 ; 2 π и смотрим, каким будет множество значений на нем.

y ‘ = ( sin x ) ‘ = cos x y ‘ = 0 ⇔ cos x = 0 ⇔ x = π 2 + πk , k ∈ Z

В рамках 0 ; 2 π у функции будут точки экстремума π 2 и x = 3 π 2 . Подсчитаем, чему будут равны значения функции в них, а также на границах отрезка, после чего выберем самое большое и самое маленькое значение.

y ( 0 ) = sin 0 = 0 y π 2 = sin π 2 = 1 y 3 π 2 = sin 3 π 2 = – 1 y ( 2 π ) = sin ( 2 π ) = 0 ⇔ min x ∈ 0 ; 2 π sin x = sin 3 π 2 = – 1 , max x ∈ 0 ; 2 π sin x = sin π 2 = 1

Ответ: E ( sin x ) = – 1 ; 1 .

Если вам нужно знать области значений таких функций, как степенная, показательная, логарифмическая, тригонометрическая, обратная тригонометрическая, то советуем вам перечитать статью об основных элементарных функциях. Теория, которую мы приводим здесь, позволяет проверить указанные там значения. Их желательно выучить, поскольку они часто требуются при решении задач. Если вы знаете области значений основных функций, то легко сможете находить области функций, которые получены из элементарных с помощью геометрического преобразования.

Условие: определите область значения y = 3 a r c cos x 3 + 5 π 7 – 4 .

Решение

Нам известно, что отрезок от 0 до пи есть область значений арккосинуса. Иными словами, E ( a r c cos x ) = 0 ; π или 0 ≤ a r c cos x ≤ π . Мы можем получить функцию a r c cos x 3 + 5 π 7 из арккосинуса, сдвинув и растянув ее вдоль оси O x , но такие преобразования нам ничего не дадут. Значит, 0 ≤ a r c cos x 3 + 5 π 7 ≤ π .

Функция 3 a r c cos x 3 + 5 π 7 может быть получена из арккосинуса a r c cos x 3 + 5 π 7 с помощью растяжения вдоль оси ординат, т.е. 0 ≤ 3 a r c cos x 3 + 5 π 7 ≤ 3 π . Финалом преобразований является сдвиг вдоль оси O y на 4 значения. В итоге получаем двойное неравенство:

0 – 4 ≤ 3 a r c cos x 3 + 5 π 7 – 4 ≤ 3 π – 4 ⇔ – 4 ≤ 3 arccos x 3 + 5 π 7 – 4 ≤ 3 π – 4

Мы получили, что нужная нам область значений будет равна E ( y ) = – 4 ; 3 π – 4 .

Ответ: E ( y ) = – 4 ; 3 π – 4 .

Еще один пример запишем без пояснений, т.к. он полностью аналогичен предыдущему.

Условие: вычислите, какова будет область значений функции y = 2 2 x – 1 + 3 .

Решение

Перепишем функцию, заданную в условии, как y = 2 · ( 2 x – 1 ) – 1 2 + 3 . Для степенной функции y = x – 1 2 область значений будет определена на промежутке 0 ; + ∞ , т.е. x – 1 2 > 0 . В таком случае:

2 x – 1 – 1 2 > 0 ⇒ 2 · ( 2 x – 1 ) – 1 2 > 0 ⇒ 2 · ( 2 x – 1 ) – 1 2 + 3 > 3

Значит, E ( y ) = 3 ; + ∞ .

Ответ: E ( y ) = 3 ; + ∞ .

Теперь разберем, как найти область значений функции, которая не является непрерывной. Для этого нам надо разбить всю область на промежутки и найти множества значений на каждом из них, после чего объединить то, что получилось. Чтобы лучше понять это, советуем повторить основные виды точек разрыва функции.

Условие: дана функция y = 2 sin x 2 – 4 , x ≤ – 3 – 1 , – 3 x ≤ 3 1 x – 3 , x > 3 . Вычислите область ее значений.

Решение

Данная функция является определенной для всех значений x . Проведем ее анализ на непрерывность при значениях аргумента, равных – 3 и 3 :

lim x → – 3 – 0 f ( x ) = lim x → – 3 2 sin x 2 – 4 = 2 sin – 3 2 – 4 = – 2 sin 3 2 – 4 lim x → – 3 + 0 f ( x ) = lim x → – 3 ( 1 ) = – 1 ⇒ lim x → – 3 – 0 f ( x ) ≠ lim x → – 3 + 0 f ( x )

Имеем неустранимый разрыв первого рода при значении аргумента – 3 . При приближении к нему значения функции стремятся к – 2 sin 3 2 – 4 , а при стремлении x к – 3 с правой стороны значения будут стремиться к – 1 .

lim x → 3 – 0 f ( x ) = lim x → 3 – 0 ( – 1 ) = 1 lim x → 3 + 0 f ( x ) = lim x → 3 + 0 1 x – 3 = + ∞

Имеем неустранимый разрыв второго рода в точке 3 . Когда функция стремится к нему, ее значения приближаются к – 1 , при стремлении к той же точке справа – к минус бесконечности.

Значит, вся область определения данной функции является разбитой на 3 интервала ( – ∞ ; – 3 ] , ( – 3 ; 3 ] , ( 3 ; + ∞ ) .

На первом из них у нас получилась функция y = 2 sin x 2 – 4 . Поскольку – 1 ≤ sin x ≤ 1 , получаем:

– 1 ≤ sin x 2 1 ⇒ – 2 ≤ 2 sin x 2 ≤ 2 ⇒ – 6 ≤ 2 sin x 2 – 4 ≤ – 2

Значит, на данном промежутке ( – ∞ ; – 3 ] множество значении функции – [ – 6 ; 2 ] .

На полуинтервале ( – 3 ; 3 ] получилась постоянная функция y = – 1 . Следовательно, все множество ее значений в данном случае будет сводится к одному числу – 1 .

На втором промежутке 3 ; + ∞ у нас есть функция y = 1 x – 3 . Она является убывающей, потому что y ‘ = – 1 ( x – 3 ) 2 0 . Она будет убывать от плюс бесконечности до 0 , но самого 0 не достигнет, потому что:

lim x → 3 + 0 1 x – 3 = 1 3 + 0 – 3 = 1 + 0 = + ∞ lim x → + ∞ 1 x – 3 = 1 + ∞ – 3 = 1 + ∞ + 0

Значит, множество значений исходной функции при x > 3 представляет собой множество 0 ; + ∞ . Теперь объединим полученные результаты: E ( y ) = – 6 ; – 2 ∪ – 1 ∪ 0 ; + ∞ .

Ответ: E ( y ) = – 6 ; – 2 ∪ – 1 ∪ 0 ; + ∞ .

Решение показано на графике:

Условие: есть функция y = x 2 – 3 e x . Определите множество ее значений.

Решение

Она определена для всех значений аргумента, представляющих собой действительные числа. Определим, в каких промежутках данная функция будет возрастать, а в каких убывать:

y ‘ = x 2 – 3 e x ‘ = 2 x e x – e x ( x 2 – 3 ) e 2 x = – x 2 + 2 x + 3 e x = – ( x + 1 ) ( x – 3 ) e x

Читайте также:
Степени чисел - возведение в степень в алгебре, таблица, правила

Мы знаем, что производная обратится в 0 , если x = – 1 и x = 3 . Поместим эти две точки на ось и выясним, какие знаки будет иметь производная на получившихся интервалах.

Функция будет убывать на ( – ∞ ; – 1 ] ∪ [ 3 ; + ∞ ) и возрастать на [ – 1 ; 3 ] . Точкой минимума будет – 1 , максимума – 3 .

Теперь найдем соответствующие значения функции:

y ( – 1 ) = – 1 2 – 3 e – 1 = – 2 e y ( 3 ) = 3 2 – 3 e 3 = 6 e – 3

Посмотрим на поведение функции на бесконечности:

lim x → – ∞ x 2 – 3 e x = – ∞ 2 – 3 e – ∞ = + ∞ + 0 = + ∞ lim x → + ∞ x 2 – 3 e x = + ∞ 2 – 3 e + ∞ = ” open=” + ∞ + ∞ = = lim x → + ∞ x 2 – 3 ‘ e x ‘ = lim x → + ∞ 2 x e x = ” open=” + ∞ + ∞ = = lim x → + ∞ 2 x ‘ ( e x ) ‘ = 2 lim x → + ∞ 1 e x = 2 · 1 + ∞ = + 0

Для вычисления второго предела было использовано правило Лопиталя. Изобразим ход нашего решения на графике.

На нем видно, что значения функции будут убывать от плюс бесконечности до – 2 e тогда, когда аргумент меняется от минус бесконечности до – 1 . Если же он изменяется от 3 до плюс бесконечности, то значения будут убывать от 6 e – 3 до 0 , но при этом 0 достигнут не будет.

Таким образом, E ( y ) = [ – 2 e ; + ∞ ) .

Ответ: E ( y ) = [ – 2 e ; + ∞ )

Как найти область определения и область значений функции

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Например, нужно найти область значений квадратичной функции y = 3x 2 — 2x — 1. Следует записать уравнение 3x 2 — 2x — 1 = 0. Ордината вычисляется таким образом: y0 = -D / 4a = -[b 2 — 4ac] / 4a = -[(-2)^2 — 4 * 3 * (-1)] / (4 * 3) = -16 / 12 = -4/3. Если коэффициент а>0, то ветви параболы направлены вверх. Следовательно, E (y) = (-4/3;+бесконечность).

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

  1. (-бесконечность;+бесконечность): y =kx + b, y = x^(2n+1), y = x^(1/(2n+1)), y = log (x) с основанием а, y = tg (x) и y = ctg (x).
  2. [0;+бесконечность): y = x^(2n), y = x^(1/(2n)) и y = a^x.
  3. (-бесконечность;0] U [0;+бесконечность) только для y = k / x (гипербола).
  4. [-1;1]: y = sin (x) и y = cos (x).
  5. [0;Pi]: y = arccos (x) и arcsin (x).
  6. [-Pi/2;Pi/2]: y = arctg (x) и arcsin (x).

Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

Важные свойства

Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

  1. В случае, когда функция f (x) является непрерывной, и наблюдается ее возрастание или убывание на отрезке [a;b], то множество значений — интервал [f (a);f (b)].
  2. Если y = f (x) обладает непрерывностью на промежутке [a;b], и существует некоторое минимальное m и максимальное М ее значения, то множеством ее значений является интервал [m;M].
  3. При непрерывности и дифференцируемости функции на промежутке [a;b], она имеет минимальное и максимальное значения на данном промежутке.

Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство. При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность. По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

Виды функций

Для каждой функции, в зависимости от ее структуры, область значений будет своя. Рассмотрим основные виды элементарных математических функций.

Обратная пропорциональность

Согласно свойств данной функции, (kneq0) , так как в этом случае ее график вместо гиперболы приобретает вид прямой линии, проходящей по оси ординат за исключением точки (0; 0). Исходя из этого, условия, область значений функции обратной пропорциональности включает в себя все действительные числа, кроме нуля:

Квадратичная (квадратная)

(y=acdot x^2+bcdot x+c)

В ее основе лежит стандартный квадратный трехчлен (acdot x^2+bcdot x+c) , причем ( aneq0) , так как иначе функция сокращается до линейной. В общем виде область значений квадратичной функции ограничивается вершиной параболы, которая является ее графиком.

Координата вершины (y_0) рассчитывается так:

Область значений зависит от коэффициента a:

  • если a>0: (E(f)=lbrack y_0;;+infty))
  • если a (E(f)=(-infty;;y_0rbrack)
Читайте также:
Осевая симметрия - определение, виды, свойства, примеры

Квадратную функцияю y=x^2 можно рассматривать как частный случай квадратичной или степенной функций. Так как при возведении числа в четную степень результат будет всегда положительным, область значений для нее следующая:

(mathrm E(mathrm f)=lbrack0;;+infty) )

Степенная

Область значений степенной функции зависит от того, к какому числовому множеству относится показатель степени n:

  1. Если (mathrm ninmathbb) , то есть является натуральным числом (за исключением нуля), то область значений включает в себя все действительные числа: ( mathrm E(mathrm f)=(-infty;;+infty).)
  2. Если (mathrm ninmathbb) , то есть относится к действительным числам, то область значений степенной функции сужается: (mathrm E(mathrm f)=(0;;+infty)) .

Показательная

Для показательной функции существует одно определяющее условие: (mathrm a>0) . В связи с этим область ее значений включает в себя все положительные числа:

(mathrm E(mathrm f)=(0;;+infty) )

Логарифмическая

(mathrm y=log_left(mathrm xright))

По своим свойствам логарифмическая функция обратна показательной. Для данных функций область определения и область значений меняются местами соответственно. ОЗ логарифмической функции включает в себя все действительные числа:

(mathrm E(mathrm f)=(-infty;;+infty))

Тригонометрические

Рассмотрим четыре базовые тригонометрические функции:

  • синус;
  • косинус;
  • тангенс;
  • котангенс.

Первые две периодически повторяются в промежутке между -1 и 1:

Область значения тангенса и котангенса включает в себя все действительные числа:

(mathrm E(mathrm f)=(-infty;;+infty))

Методы нахождения

Поиск области значений функции несколько сложнее, чем определение ОДЗ. В зависимости от вида и типа функции, а также условий задачи для этого могут применяться различные методы.

Перебор значений

Самый простой и ограниченный способ. При его помощи можно находить область значений на небольшом промежутке целых чисел (xin(a;;b)) . В таком случае заданные значения переменной поочередно подставляются в уравнение и вычисляются значения функции, соответствующие им.

Графический метод

Как ясно из названия способа, для его реализации необходимо построить график исследуемой функции. По внешнему виду кривой уже можно делать некоторые выводы. Если линия графика соответствует одному из видов элементарных функций, например, является параболой, то в качестве области значений берется промежуток, соответствующий данному графику.

Если по условию задачи необходимо найти область значений функции на определенном промежутке значений переменной x, то на графике максимальные и минимальные точки становятся очевидными. Это могут быть как общие точки экстремума, так и локальные максимальные и минимальные значения.

Учет непрерывности и монотонности

Данный метод вытекает из предыдущего и позволяет делать некоторые прогнозы об области значений функции исходя из ее свойств. Если на графике видно, что функция не прерывается и монотонно убывает или возрастает на определенном промежутке, можно предположить, что эта тенденция сохранится и дальше.

Например, график квадратичной функции f(x)=x^2 имеет вид параболы с точкой перегиба с координатами (0, 0). Кривая непрерывна, то есть не имеет разрывов в области определения. Для того, чтобы определить область значений данной функции, достаточно построить ее график на ограниченном промежутке. Для примера возьмем (xinlbrack-4;;4rbrack) :

Рисунок 1. Значение непрерывности и монотонности функции для области определения

На графике видно, что функция монотонно убывает на промежутке (lbrack-4;;0rbrack) и монотонно возрастает на промежутке ( lbrack0;;4rbrack) . Исходя из этого и непрерывности функции, можно экстраполировать данную закономерность на всю область определения. Так как минимальное значение данной функции равняется нулю, область значений будет следующей:

(mathrm E(mathrm f)=lbrack0;;+infty))

Производная, min и max

Описанные выше способы подходят не для всех ситуаций. В общем случае, задача по определению области значений функции всегда сводится к нахождению ее минимального и максимального значения или точек экстремума.

Согласно теореме Ферма, в точках локального экстремума производная исследуемой функции равняется нулю.

Важно понимать, что сами локальный экстремум не обязательно является максимумом или минимумом для функции в целом. Такие точки называются критическими или стационарными. Поэтому, кроме самих точек необходимо определять промежутки возрастания и убывания:

  • если при переходе через критическую точку производная функции меняет знак с (+) на (-), то эта точка является максимумом;
  • если при переходе через критическую точку производная меняет знак с (-) на (+), то такая точка является минимумом;
  • если при переходе знак производной не меняется, то экстремума в данной точке нет.

Кроме того, экстремумы функции можно определять по второй производной. Предположим, при исследовании функции обнаружилась некая критическая точка x_1. Для нее справедливы следующие неравенства:

Если (f»(x_1)>0) , то (x_1) — точка минимума.

Если (f»(x_1) , то (x_1) — точка максимума.

Нахождение множества значений функции.

1. Метод оценки (границ).

Для нахождения множества значений функции сначала находят множество значений аргумента, затем, используя свойства неравенств, отыскивают соответствующие наименьше и наибольшее значения функции функции. Если есть возможность путем тождественных преобразований получить функцию, которая на всей области определения или на заранее заданном множестве является непрерывной и либо только возрастающей либо только убывающей, тогда используя свойства неравенств оценивают множество значений вновь полученной функции.

Пример 1. Найдите множество значений функци y=5 .

Из определения квадратного корня следует, что 4 – xzbr.gif” /> 0, решая квадратичное неравенство получаем, что -2x2. разобьем промежуток [-2; 2] на два промежутка [-2; 0] и (0; 2]. Первому промежутку соответствует неравенство -2x0, а второму соответствует 0 2 4.
Умножим все три части неравенства на – 1, получим неравенство

– 4– x 2 0.
Прибавим к трем частям неравенства 4 и получим

0 4 – x 2 4.
Введем вспомогательную переменную предположив, что

t = 4 – x 2 , где 0 t4.

Функция y =на указанном промежутке непрерывна и возрастает, поэтому свои наименьшее и наибольшее значения принимает на концах промежутка и, следовательно, 0 2 тогда произведя обратную замену переменных получим неравенство 0 2. Прибавим к трем частя последнего двойного неравенств 5, умножив его предварительно на – 1, получим 3 5 – 5.

Множество значений функции y = 5 является множество [3; 5].

Пример 2. Найти множество значений функции y = 5 – 4sinx.

Из определения синуса следует, -1sinx1. Далее воспользуемся свойствами числовых неравенств.

-4– 4sinx4, (умножили все три части двойного неравенства на -4);

15 – 4sinx9 (прибавили к трем частям двойного неравенства 5);

Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением на всей области определения, если таковые существуют. В данном случаее множество значений функции y =5 – 4sinxесть множество [1; 9].

Пример 3. Найти множество значений функции y = sinx + cos x.

Преобразуем выражение sinx + cos x = sinx +sin(– x) =
= 2sin((x +– x)/2)cos((x ++ x)/2) = 2sin<)cos(x +) =
=cos(x +).

Из определения косинуса следует -1cosx1;

-1cos(x +>1;

cos( x +);

Так какданная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением, если таковые существуют, множество значений функции y =cos(x +) есть множество [-;]. Множество значений функции

y = sinx + cosx есть множество чисел [-;].

Пример 4. Найти множество значений функции y = 3sinx + 7cos x.

Преобразуем выражение 3sinx + 7cos x. Заметим, что 3 2 + 7 2 = 9 + 49 = 58 =Умножим и разделим каждое слагаемое на
3sinx + 7cos x =(sinx +cosx).
Так как 2 + () 2 = 1, то найдется такое числочто cos=и sin=. Тогда 3sinx + 7cos x =(cossinx + sincosx) =sin(+ x).

Из определения синуса следует, что при любом х справедливо неравенство -1sinx1 и, из периодичности этой функции, следует, что

-1 sin(+ x) 1, тогда умножая все части двойного неравенства на, имеем –sin(+ x).

Множество значений функции y = 3sinx + 7cos xявляется множество [ –;].

2. Метод применения свойств непрерывной функции.

Среди числовых значений, принимаемых на заданном отрезке непрерывной функцией, всегда имеется как наименьшее pначение m, так и наибольшее значение М. Множество значений функции заключено между числами m и M. Это основные утверждения положенны в основу поиска множества значений функции в следующем примере.

Пример 5. Найти множество значений функции y = 2sinx + cos2x на отрезке [0; p ].

D(y) = R. Данная функция на всей области определения непрерывна, поэтому на отрезке [0; p ] существуют такие точки, в которых функция принимает свои наименьше и наибольшее значения. Эти точки либо критические, либо концы отрезка.

1) найдем производную данной функции

2) y’ = 2cosx – 2 sin2x = 2cosx – 4sinxcosx = 2cosx(1 – 2sinx)

3) Область определения производной R.

3) Найдем ее критические точки. y’ = 0. 2cosx(1 – sinx) = 0, это уравнение равносильно совокупности двух уравнений:
cosx = 0 и 1 – 2sinx = 0.
Решая каждое из них получим:
x =+n, где nZи x = (-1) n +k, где kZ.

Отрезку [0;] принадлежат три критические точки: x =, x =, x =.

Вычисляем значение функции на концах промежутка и в критических точках:
y(0) = 1, y() = 1, y() = 1,5, y( ) = 1,5, следовательно, наименьшее значение функции на отрезке[0;] равно 1, а наибольшее значение функции на этом же отрезке равно 1,5. Исходя из выше изложенный утверждений Е(у) = [1; 1,5].

3. Метод приведения к уравнению относительно х с параметром у.

Возможна следующая схема применения этого метода:

Пусть функция задана формулой y = f(x).

2) Рассматриваем функцию как уравнение с параметром у.

3) Выясняем при каких значениях у уравнение f(x) – y = 0 имеет хотя бы один корень. Полученное множество будет множеством значений заданной функции.

Пример 6. найдите множество значений функции.

x 2 + 5 > 0 при любом х, следовательно, D(y) = R. Рассматриваем формулу:

, как уравнение с параметром у. Это уравнение равносильно уравнению y(x 2 + 5) = x 2 – 4x + 4;

x 2 (y – 1) + 4x + 5y + 1 = 0;

1) Если у = 1, то данное уравнение равносильно линейному уравнению 4х + 6 = 0, которое имеет один корень.

Если у1, то квадратное уравнение, которое мы получили в результате выше изложенных соображений, имеет корни тогда и только тогда, когда его дискриминант не отрицателен.

D/4 = 4 – (y – 1)(5y + 1)0;

– 5y 2 + 4y +50;

5y 2 – 4y – 50; Вычислим четверть дискриминанта и корни квадратного трехчлена 5y 2 – 4y -5:

y = 2 –и y = 2 + .

Таким образом квадратное уравнение имеет корни,если параметр y[2-; 1) и (1; 2 +],

Учитывая пункты 1) и 2), делаем вывод, что множество значений изучаемой функции – [2 – ; 2 + ].

4. Метод непосредственных вычислений.

В случае, когда область определения функции содержит конечное число значений аргумента или количество значений не велико, или множество значений аргумента может быть описано с помощью конечного числа формул, так бывает в случае рассмотрения тригонометрических функций, обычно множество значений функции находят путем непосредственных вычислений.

Пример 7. Укажите множество значений функции y = 11 –.

Найдем область определения данной функции. Так как в формуле задающей функцию есть квадратный корень, то согласно определению квадратного корня потребуем, чтобы подкоренное выражение было неотрицательным:

10х – х 2 -250;

-(х – 5) 2 0;

(х – 5) 2 0; Откудах = 5. Таким образом область определения данной функции состоит из одного числа, следовательно, множество значений функции состоит из одного числа и Е(у) = <11>.

Область значения функции как определить и найти, примеры решения нахождения области значений тригонометрических функций по графику

В некоторых типах задач следует провести исследование какой-либо функции. Это делается очень просто, поскольку существуют определенные алгоритмы нахождения некоторых величин. В интернете можно найти много информации, но некоторые сведения являются недостоверными. Одним из элементов исследования считается определение области значения функции.

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Например, нужно найти область значений квадратичной функции y = 3x 2 — 2x — 1. Следует записать уравнение 3x 2 — 2x — 1 = 0. Ордината вычисляется таким образом: y0 = -D / 4a = -[b 2 — 4ac] / 4a = -[(-2)^2 — 4 * 3 * (-1)] / (4 * 3) = -16 / 12 = -4/3. Если коэффициент а>0, то ветви параболы направлены вверх. Следовательно, E (y) = (-4/3;+бесконечность).

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

  • (-бесконечность;+бесконечность): y =kx + b, y = x^(2n+1), y = x^(1/(2n+1)), y = log (x) с основанием а, y = tg (x) и y = ctg (x).
  • [0;+бесконечность): y = x^(2n), y = x^(1/(2n)) и y = a^x.
  • (-бесконечность;0] U [0;+бесконечность) только для y = k / x (гипербола).
  • [-1;1]: y = sin (x) и y = cos (x).
  • [0;Pi]: y = arccos (x) и arcsin (x).
  • [-Pi/2;Pi/2]: y = arctg (x) и arcsin (x).

    Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

    Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

    Важные свойства

    Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

  • В случае, когда функция f (x) является непрерывной, и наблюдается ее возрастание или убывание на отрезке [a;b], то множество значений — интервал [f (a);f (b)].
  • Если y = f (x) обладает непрерывностью на промежутке [a;b], и существует некоторое минимальное m и максимальное М ее значения, то множеством ее значений является интервал [m;M].
  • При непрерывности и дифференцируемости функции на промежутке [a;b], она имеет минимальное и максимальное значения на данном промежутке.

    Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство. При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность. По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

    Методы нахождения

    Существует много способов нахождения области значений. Однако для решения задач нужно подбирать оптимальный метод, поскольку следует избегать лишних вычислений. Например, если функция является простой, то нет необходимости применять сложные алгоритмы решения. К методам нахождения относятся следующие:

  • Отдельное нахождение значений элементов сложной функции.
  • Оценочный.
  • Учет непрерывности и монотонности.
  • Взятие производной.
  • Использование max и min функции.

    Для каждого из методов существует определенный алгоритм. Хотя встречаются случаи, когда целесообразно применить два простых метода. Нужно руководствоваться минимальным количеством вычислений и затраченным временем.

    Для каждого элемента

    Иногда в задачах следует найти E (f) при условии, когда функция является сложной. Очень распространенная методика разбиения задачи на подзадачи, которая применяется не только в дисциплинах с физико-математическим уклоном, но в экономике, бизнесе и других направлениях. Решение с помощью метода последовательного нахождения E (f) каждой из функций. Алгоритм имеет такой вид:

  • Выполнить необходимые преобразования — упростить выражение.
  • Разбить выражение на элементы.
  • Выполнить поиск E (f) для каждого элемента.
  • Произвести замену.
  • Анализ.
  • Результат решения.

    Однако довольно сложно ориентировать по данному алгоритму, поскольку нужно разобрать решение примера с его помощью. Дана функция y = log0.5 (4 — 2 * 3^x — 9^x). Решается задача таким образом:

  • Упростить (выделить квадрат): y = log0.5 (4 — 2 * 3^x — 9^x) = log0.5 [5 — (1 — 2 * 3^x — 9^x)] = log0.5 [5 — (3^x + 1)].
  • Разбить на элементарные функции: y = 3^x, y = 3^x + 1, y = [-(3^x + 1)]^2 и y = [5 — (3^x + 1)]^2.
  • Определить для каждого элемента E (f): E (3^x) = (0;+бесконечность), E (3^x + 1) = (1;+бесконечность), E ([-(3^x + 1)]^2) = (-бесконечность;-1) и E ([5 — (3^x + 1)]^2) = (-бесконечность;4).
  • Произвести замену: t = 5 — (3^x + 1)]^2 (-бесконечность 0, то она стремится к бесконечности. Когда t = 4, ее значение равно -2.
  • Результат решения — искомый интервал: E (f) = (-2;+бесконечность).

    Необходимо обратить внимание на пункты 1, 3 и 5. Они являются очень важными, поскольку от них зависит правильность решения. Очень важно уметь анализировать полученную функцию в 4 пункте.

    Оценочный способ

    Еще одним методом определения E (f) является способ оценки. Необходимо оценить непрерывную функцию в нижнем и верхнем направлениях. Еще следует доказать достижение нижней и верхней границ. Для этой цели существует также алгоритм. Он немного проще предыдущего. Суть его заключается в следующем:

  • Доказать непрерывность.
  • Составить неравенство или неравенства для нескольких функций.
  • Узнать оценку.
  • Записать интервал.

    Необходимо разобрать алгоритм на примере функции y = cos (7x) + 5 * cos (x). Следует учитывать, что известен только один знак неравенства. Второй нужно доказать оценочным методом. Решение задачи имеет такой вид:

  • Функция вида y = cos (x) является непрерывной.
  • Неравенства: -1 Учет непрерывности и монотонности

    Одним из простых способов решения, который специалисты рекомендуют новичкам, является метод учета непрерывности и монотонности. Для этого существует специальный алгоритм:

  • Упростить выражение.
  • Выполнить замену при необходимости.
  • Найти вершину графика.
  • Определить промежуток.
  • Вычислить максимальное и минимальное значения.
  • Записать E (f).

    Например, существует некоторая функция y = cos (2x) + 2cos (x). Необходимо найти ее E. Искать следует по алгоритму решения методом учета монотонности и непрерывности:

  • Упростить (по формуле двойного угла): y = 2 * (cos (x))^2 + 2cosx — 1.
  • Замена t = cos (x): y = 2 * t 2 + 2 * t — 1 = 2 * (t + 0,5)^2 — 1,5.
  • Показательная функция является параболой. Она монотонна, непрерывна и имеет вершину по оси ОУ -1,5. Промежуток, который рассматривается — [-1;1], поскольку E (cos (x)) = [-1;1].
  • Минимальное значение равно -1,5, так как ветви направлены вверх. Максимальное на промежутке [-1;1] — MAX (y) = 3. Для его нахождения нужно построить график параболы y = 2 * (t + 0,5)^2 — 1,5.
  • Искомый интервал — E (cos (2x) + 2cos (x)) = [-1,5;3].

    Чтобы построить график параболы, нужно найти ее вершину и точки пересечения с осью абсцисс. Последние находятся при решении уравнения 2 * (t + 0,5)^2 — 1,5 = 0. Однако существует способ намного проще. Для этого следует привести выражение к виду 2 * (t + 0,5)^2 = 1,5. Отсюда t = — 0,5. Следовательно, координаты вершины — (-0,5;-1,5). Корни уравнения при его решении: t1 = -[(1 + (3)^0.5)] / 2 и t2 = -[(1 — (3)^0.5)] / 2.

    Производная, min и max

    Одним из простейших способов нахождения E (f) является взятие производной функции. Этот метод можно комбинировать с определением максимального и минимального значений. Математики рекомендуют простейший алгоритм:

  • Найти производную.
  • Анализ.
  • Указать MAX (f) и MIN (f).
  • Запись интервала в формате (MIN (f);MAX (f)).

    Практическое применение алгоритма — решение задачи этим методом. Например, нужно найти E (arcsin (x)). Решение выполняется по нескольким этапам:

  • Производная: y’ = [arcsin (x)]’ = 1 / [(1 — x 2 )^0.5].
  • Функция возрастает на интервале (-1;1).
  • Минимум и максимум на отрезке (-1;1): MIN (arcsin (-1)) = -Pi/2 MAX (arcsin (1)) = Pi/2.
  • Интервал: E (arcsin (x)) = [-Pi/2;Pi/2].

    В некоторых случаях рекомендуется вычислять пределы, поскольку часть задач решается только с их применением. Существует определенный тип задач, в которых нужно доказать, что отрезок является E (f) конкретной функции. Например, следует выяснить принадлежность [-1;1] функции sin (x). Для этого необходимо воспользоваться вышеописанным алгоритмом:

  • Производная: y’ = [sin (x)]’ = cos (x).
  • Период функции равен 2Pi. Следует взять отрезок [0;2Pi]. Для нахождения множества значений на нем нужно приравнять производную функции к 0, т. е. cos (x) = 0. Найти х = Pi/2 + Pi * к, где «к» принадлежит Z. Точки экстремума равны Pi/2 и 3Pi/2.
  • Минимум и максимум на отрезке [0;2Pi): MIN ([sin (3Pi/2)]) = -1 и MAX ([sin (3Pi/2)]) = 1.
  • E (sin (x)) = [-1;1].

    Отрезок [-1;1] является E (sin (x)). Оптимальный метод — нахождение производной и определение E (f). В этом примере необходимо знать и проверить периодичность.

    Таким образом, существует несколько способов нахождения E (f), но всегда необходимо выбирать метод, приводящий к минимуму вычислений. Нет смысла усложнять решение, поскольку большинство алгоритмов направлены на оптимизацию вычислений.

    Определение числовой функции. Область определения функции. Область значения функции.

    Что такое область определения функции? что такое область значения функции? Давайте, в этой статье разберемся в понятиях числовой функции и ее характеристиках и свойствах.

    Определение функции.

    Функция y=f(x) — это когда каждому допустимому значению переменной x соответствует единственное значение переменной y или другими словами такая зависимость переменной y от переменной x.

    х — называется независимой переменной или аргументом.

    y – называется зависимой переменной или значением функции.

    Множество чисел, где x∈X или D(f) — называется областью определения функции. Это множество всех допустимых значений переменной х.

    Область значений функций, когда задаем правило или функцию, которая позволяет по произвольно выбранному значению x∈D(f) вычислить соответствующее значение y.

    Переменную х или аргумент мы придумываем сами и подставляем в правило, которое задали или функцию. Далее рассчитываем переменную y или значение функции.

    В тех диапазонах в которых существует переменная х называется областью определения функции.

    В тех диапазонах в которых существует переменная y называется областью значения функции.

    Графиком функции y=f(x), x∈X называется множество точек (x; f(x)) координатной плоскости.

    Разберём пример №1:

    Найдите область определения и область значения числовой функции y=x 2

    Вместо переменной x мы можем брать любые числа и просчитать переменную y.

    x -4 -3 -2 -1 1 2 3 4
    y 16 9 4 1 1 4 9 16

    По графику также видно, что сколько бы угодно мы не проводили линий через ось х, мы найдем пересечение с графиком.

    Следовательно, раз нет ограничений по переменной x она существует от -∞ до +∞ или краткая запись x∈(-∞; +∞). Область определения, это диапазон чисел, которые можно подставить в определенную формулу графика, если ограничений нет, то D(f) = (−∞; +∞).

    А теперь рассмотрим переменную у. В таблице мы видим, что переменная y принимает положительные значение, так как и самое минимальное значение 0. Следовательно, y∈[0; +∞).

    Если посмотрим на график, то увидим, что графика ниже нуля нет. Следовательно, область значения функции E(f) = [0; +∞).

    Разберём пример №2:

    Найдите область определения и область значения числовой функции y=x+1?

    Вместо переменной x мы можем брать любые числа и просчитать переменную y.

    x -4 -3 -2 -1 1 2 3 4
    y -3 -2 -1 1 2 3 4 5

    По графику также видно, что сколько бы угодно мы не проводили линий через ось х, мы найдем пересечение с графиком.

    Следовательно, раз нет ограничений по переменной x она существует от -∞ до +∞ или краткая запись x∈(-∞; +∞). Область определения, это диапазон чисел, которые можно подставить в определенную формулу графика, если ограничений нет, то D(f) = (−∞; +∞).

    Рассмотрим переменную у. В таблице мы видим, что переменная y также принимает значения как в положительном, так и в отрицательном направлении. Следовательно, ограничений у переменной y нет, y∈(−∞; +∞). Область значения функции E(f) = (−∞; +∞).

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: