Нивелирование – определение, основные виды и способы, схема

Способы геометрического нивелирования

ТЕМА 6. НИВЕЛИРОВАНИЕ

Лекция 8:

Задачи и методы нивелирования

Одним из основных видов геодезических работ является нивелирование, имеющий целью определение относительных отметок точек земной поверхности, элементов конструкций, а также их высоты относительно принятой уровенной поверхности.

Нивелирование производится для изучения форм рельефа и определения превышений отдельных точек конструкций и сооружения в целом при проектировании, строительстве и эксплуатации. Результаты этого вида геодезических работ используются при решении различных инженерных и научных задач в целом ряде отраслей, в том числе и оборонного значения.

По видам нивелирование подразделяется на:

Геометрическое нивелирование основано на горизонтальном положении визирного луча, которое задается с помощью инструментов, называемых нивелирами.

Тригонометрическое нивелирование производится наклонным лучом с использованием теодолитов либо тахеометров. В этом случае измеряются углы наклона и расстояния между определяемыми точками.

Физическое нивелирование разделяется на барометрическое, гидростатическое и аэронивелирование.

При барометрическом нивелировании используют барометры, с помощью которых по разности давлений в различных точках определяются превышения между ними.

Гидростатическое нивелирование основано на свойстве поверхности жидкости в сообщающихся сосудах всегда находится на одинаковом уровне.

Аэронивелирование производится с самолета при помощи радио-высотометра и статоскопа, позволяющих определять высоты самолета над земной поверхностью и изменение его высоты в полете; совместное использование этих данных определяет превышения между точками поверхности Земли.

Стереофотограмметрическое нивелирование выполняется путем измерений модели местности, основанное на стереоэффекте при рассматривании двух снимков одной и той же местности (стереопар).

Автоматическое нивелирование производится при помощи приборов, автоматически вычерчивающих профиль местности.

Наиболее точным и употребительным в инженерной практике является геометрическое нивелирование.

Способы геометрического нивелирования

Геометрическое нивелирование является наиболее распространенным и точным видом. С помощью геометрического нивелирования выполняются следующие виды работ:

– создание высотной государственной геодезической сети;

– передача отметок от пунктов высотной опорной сети на строительные площадки;

– при трассировании линейных сооружений;

– передача отметок на монтажные горизонты и дно глубокого котлована;


– наблюдение за вертикальными деформациями зданий и сооружений.

Различают два способа геометрического нивелирования: из середины и вперед. При выполнении первого способа нивелир устанавливают посередине между точками А и В и приводят визирную ось инструмента в горизонтальное положение (рис. 6.1). На точки А и В Вертикально устанавливают рейки с нанесенными делениями. Отсчет делений ведется от нижнего конца (пятки) рейки вверх. Превышение между точками определяют

h = а – b, (6.1)

где а и b – отсчеты по рейкам.

Если нивелирование производится от точки А к точке В, то рейка в точке А будет задней, а в точке В – передней. Следовательно, превышение равно разности отсчетов по задней и передней рейкам.

Второй способ заключается в следующем: нивелир устанавливают над точкой таким образом, чтобы вертикальная линия от окуляра с точкой А (рис. 6.2). Визирную ось приводят в горизонтальное положение, измеряют высоту i инструмента и берут отсчет b по рейке. В этом случае

h = i – b, (6.2)

т.е. превышение равно высоте инструмента минус отсчет по передней рейке.

Если известна отметка точки А и определено превышение точки В над точкой А,то из рис. 6.1 следует

Очень часто возникает необходимость вычислять отметки точек через горизонт инструмента ГИ. Горизонтом инструмента называется расстояние по вертикали от уровенной поверхности до визирного луча и согласно рис 6.1

. (6.4)

Для схемы на рис. 6.2 горизонт инструмента определится

. (6.5)

Отметка точки В получается

, (6.6)

т.е. отметка точки равна горизонту инструмента минус отсчет на данную точку.

Для передачи отметок на значительные расстояния, а также для составления профиля местности нивелируемая линия АС (рис. 6.3) разбивается на отрезки, каждый из которых нивелируется с одной постановки инструмента, которая называется станцией. Установив нивелир в точке К1,получают превышение точки 1относительно точки А:

Читайте также:
Инженерная графика, основы курса и теории чертежей

Далее последовательно определяют h2, h3 . между точками 2и 1, 3и 2и т.д. Таким образом, превышение конечной точки над первой равно сумме отсчетов по задней рейке минус сумма отсчетов по передней

. (6.8)

Отметка точки С будет

. (6.9)

Точки нивелирного хода, через которые происходит последовательная передача отметок, называются связующими. В том случае, если последовательное нивелирование производится для составления профиля, возникает необходимость определять отметки характерных точек местности. Такие точки, расположенные между связующими, называются промежуточными или плюсовыми, и не участвуют в передаче отметок. Они обозначаются числом метров, соответствующим расстоянию от задней точки до промежуточной, (+71 на станции К2 и +66на последней станции).

Виды нивелирных ходов

Нивелирование – определение высот точек земной поверхности относительно исходной точки («нуля высот») или над уровнем моря. Нивелирование является одним из видов геодезических измерений, которые производятся для создания высотной опорной геодезической сети, при топографической съёмке, а также в целях проектирования, строительства и эксплуатации инженерных сооружений, железных и шоссейных дорог и т.д. Результаты нивелирования используются в научных исследованиях по изучению фигуры Земли, колебаний уровней морей и океанов, вертикальных движений земной коры и т.п.
При анализе и сопоставлении результатов измерений, можно точно отобразить рельеф на топографических картах, разработать проекты организационно-строительной деятельности.
Работы по измерению разности высот называется нивелиром.
Современные нивелиры по конструкции делятся на три вида:
• Оптический нивелир;
• Цифровой нивелир;
• Лазерный нивелир.
Каждый из видов имеет свои конструктивные особенности, сферу использования и точность измерения.

Виды нивелирования

В настоящий момент применяют семь разновидностей выполнения измерений. Каждый вид зависит от конкретного случая и сложности выполнения поставленных задач.

Геометрическое нивелирование

Геометрическое нивелирование – метод определения превышений путем визирования горизонтальным лучом. Сущность геометрического нивелирования сводится к определению превышений между точками горизонтальным лучом.
Чтобы выполнить такое измерение, нужен горизонтальный луч визирования и отсчетная шкала. Такой луч генерируется при помощи нивелира, а отсчетной шкалой является рейка со шкалой.
При этом виде нивелирования, превышения между точками получают как разность отсчетов по рейкам при горизонтальном положении визирной оси нивелира. Этот метод является наиболее простым и точным, но позволяет одной постановки прибора получить превышения не более длины рейки, поэтому при больших высотных перепадах местности его эффективность и точность падают.

По способу определения планового положения снимаемых очертаний и нивелируемых точек выделяют следующие методики нивелирования поверхности:
• по квадратам (при условии гладкой местности);
• по параллельным линиям (в лесистой местности);
• по магистралям (при выраженном рельефе).

Барометрическое нивелирование

Барометрическое нивелирование – один из методов нивелирования, основанный на установленной Блезом Паскалем в 1647 связи давления воздуха с высотой точки над уровнем моря
Метод необходим, чтобы измерить превышение перепада атмосферного давления. Измерения проводятся в разных отметках необходимой территории.
Данный метод, основывается на использовании зависимости между атмосферным давлением и высотой точек на местности. В этом методе не требуется взаимная видимость между точками, но точность барометрического нивелирования сравнительно невысока из-за недостаточно точного учета влияния многих факторов, связанных с физикой атмосферы и другими причинами.
В данном методе используются барометр. Им измеряют давление и, сопоставляя показатели, определяется превышение. Из-за зависимости полученных измерений от погодообразования, погрешность может варьироваться от полуметра до двух. Данный метод применяется на начальном этапе работ.

Тригонометрическое нивелирование

Тригонометрическое нивелирование – метод определения разностей высот точек (превышений) на какой либо поверхности основанный на простой связи угла наклона визирного луча и расстоянием между точками.
Чтобы измерить вертикальные углы, применяют геодезическое оборудование: тахеометр, теодолит – чтобы определить угол наклона, дальномер – измерить расстояние. Погрешность – максимум 40 мм на 100 м. Ограниченно применение в горной и холмистой местности.

Читайте также:
Теодолитный ход - определение, назначение, основные виды и схемы

Гидростатическое нивелирование

Гидростатическое нивелирование – определение высот точек земной поверхности относительно исходной точки с помощью сообщающихся сосудов с жидкостью.
Жидкость в емкости устанавливается по одному уровню, а поверхность расположена под прямым углом по направлению к силе тяжести, что дает возможность определить превышение. Применяется, чтобы получить небольшие измерения. Погрешность сопоставима с геометрическим нивелированием.

Стереофотограмметрическое нивелирование

Стереофотограмметрическое нивелирование – это определение высот точек местности посредством измерения стереопар аэрокосмических и наземных снимков, при помощи наземной (теодолит со встроенным фотоаппаратом) и летательной техники (аэрофотоаппарат).
Это основной метод, применяемый для топографии и картографии местности.

Механическое нивелирование

Механическое нивелирование – определение высот точек земной поверхности относительно исходной точки методом автоматического вычерчивания профиля местности и измеряемому расстоянию.
Применяется в качестве контроля расположения автомобильных, железных дорог и прочих линейных конструкций.
При помощи особых датчиков, зафиксированных на транспорте, на листе вырисовывается профиль местности.

Радиолокационное нивелирование

Радиолокационное нивелирование – вид геодезических измерений основанный на методе получения абсолютных высот с летательных аппаратов, используя специальные высотометры.

Основные способы нивелирования

Выделяют пару способов, они отличаются от положения нивелира в нивелируемых точках:

Нивелирование из середины. Нивелир ставится посередине между заданными точками, в самих точках рейки. Точка А – задняя, В – передняя.
Визирная ось нивелира приводится в горизонтальное положение и поочередно наводится на А, а потом на В, получаются расчеты а и b. Формула превышения между точками: h = a — b;

Нивелирование вперед. Над точкой А устанавливается нивелир таким образом, чтобы визир находился на одной отвесной линии с точкой. Рейка устанавливается на точке В. Измеряется высота i над точкой А и берется отсчет b по рейке. Формула превышения между точками: h = i — b.

Выполняя последовательное нивелирование – получается нивелирный ход.

Методы нивелирования

Вы будете перенаправлены на Автор24

Нивелирование в геодезии представляет собой комплекс работ геодезической направленности, которые связаны с измерением превышений, а также высот точек местности. Подобные работы выполняются при необходимости решений разных инженерно-геодезических задач в строительстве, в условиях высотной съемки местности, выполнения научно-технических задач, когда изучаются динамические процессы движения земной коры, разности уровня воды в океанах, при исследовании деформаций инженерных сооружений.

Подразделяют нивелирные сети на ведомственные и государственные. Государственная сеть означает систему располагающихся на всей территории страны закрепленных на местности геодезических пунктов (называемых реперами). Высоты таких реперов установлены в единой системе от исходного пункта, считающегося началом отсчета высот.

Государственную нивелирную сеть строят, согласно принципу от общего к частному. При этом она разделена на четыре класса. Сети первого и второго классов считаются максимально точными, они предназначены с целью распространения на территорию страны единой системы высот.

Таким образом, к высокоточному нивелированию относятся первый и второй классы, а к точному – третий и четвертый (сети сгущения).

В геодезии выделяют такие методы нивелирования:

  • геометрическое, наиболее точное (отмечено ситуацией, когда превышение между точками получается в форме разности отсчетов по рейке при условии горизонтального положения визирной оси);
  • тригонометрическое (при таком методе превышение между точками будет определяться по расстояниям между точками и измеренным вертикальным углам, имеется в виду нивелирование посредством наклонного визирного луча).
  • барометрическое (основывается на зависимости высоты точек на местности и атмосферного давления);
  • гидростатическое (основано на таком свойстве жидкости в сообщающихся сосудах, как пребывание на одном уровне).
Читайте также:
Поверки теодолита - устройство и классификация приборов

Готовые работы на аналогичную тему

Геометрическое нивелирование

Геометрическое нивелирование выполняется с задействованием нивелира и нивелирных реек. Нивелир является прибором, в котором в горизонтальное положение приводится визирный луч. Отсчеты берутся по шкалам вертикально устанавливаемых реек нивелира. Возрастание оцифровки шкал на рейках осуществляется вверх от пятки рейки. Если нулевая отметка шкалы находится на пятке рейки, отсчет по рейке равнозначен расстоянию между пяткой и лучом визирования.

Рисунок 1. Схемы основных способов геометрического нивелирования. Автор24 — интернет-биржа студенческих работ

Геометрическое нивелирование выполняется следующими двумя способами:

  1. Нивелирование из середины (считается главным способом). С целью измерения превышения одной точки над другой нивелир устанавливается в средней части между ними, при этом в горизонтальное положение приводится его визирная ось. На этих точках устанавливаются рейки нивелира. Отсчет первой точки берется по задней рейке, а второй – по передней.
  2. Нивелирование вперед предусматривает установку нивелира над первой точкой и последующее измерение (стандартно – посредством рейки) высоты прибора. Во второй точке, чью высоту потребуется установить, устанавливаются рейка. После приведения визирной оси нивелира в горизонтальное положение, берется отсчет второй точки по черной стороне рейки.

Тригонометрическое нивелирование

Тригонометрическое нивелирование между двумя пунктами предполагает включение измерения расстояния и угла наклона между ними с дальнейшим вычислением показателя превышения по тригонометрическим формулам. Над первым пунктом ставится теодолит, на второй ставится рейка или веха.

На рейке (вехе) отмечается точка визирования и измеряется ее высота. Над первым пунктом измеряется показатель высоты прибора. Посредством теодолита измеряется угол наклона линии. Наклонное расстояние определяется с задействованием оптического дальномера или светодальномера.

Теодолит представляет собой специальный прибор измерительного действия, предназначенный для вычисления вертикальных и горизонтальных углов в момент проведения топографических съемок, а также при осуществлении маркшейдерских и геодезических работ, в рамках строительства и пр.

Рисунок 2. Схема тахеометрического хода. Автор24 — интернет-биржа студенческих работ

Основной рабочей мерой в теодолите выступают лимбы с присутствием градусных и минутных делений (горизонтального и вертикального типа). Теодолит может применяться для определения расстояний с нитяным дальномером.

Альтернативным вариантом конструкции теодолита является гиротеодолит, кинотеодолит и тахеометр. В конструктивном плане теодолит состоит из таких базовых узлов:

  • корпуса с наличием горизонтальных и вертикальных отсчетных кругов и иных технологических узлов;
  • подставки (иногда называемая триггером) с присутствием трех подъемных винтов и круглого уровня (с целью горизонтирования теодолита);
  • зрительной трубы;
  • наводящих и закрепительных винтов для того, чтобы зафиксировать зрительную трубу на объекте наблюдения;
  • цилиндрического уровня;
  • оптического центрира (отвеса) в целях максимально точного центрирования над точкой;
  • отсчетного микроскопа для снятия отсчетов.

Поверки теодолита представляют действия, направленные на выявление выполнения геометрических условий, предъявляемых к инструменту. С целью выполнения нарушенных условий производятся действия по исправлению (юстировка инструмента).

Барометрическое нивелирование

С целью вычисления высот точек местности в ходе выполнения работ по геодезическому исследованию, с целью съемки рельефа горной и высокогорной территории, может применяться метод барометрического нивелирования. Задачей такого метода является вычисление разности высот двух точек на базе результатов параллельного измерения атмосферного давления в данных точках.

Что касается атмосферного давления в каждой точке местности, то оно будет зависимым от высоты над уровнем моря и тех метеорологических условий, которые наблюдались в момент измерений. При измерении атмосферного давления применяются барометры пружинного и частично жидкостного (ртутного) типа. Пружинные называются также анероидами.

В связи с существенным воздействием на давление температуры воздуха, ее измерение выполняется параллельно с давлением на станции посредством термометра-праща (толстостенного капилляра, в один конец которого помещают ртуть, а что касается другого, то он заканчивается металлическим наконечником (возможно стеклянным шаром), к которому прикрепляется шнур).

Читайте также:
Обозначение резьбы на чертежах по ГОСТу - основные типы и размеры

Нивелирование в геодезии

Современное строительство похоже на масштабное производство какого – ни будь завода автогиганта, где существует масса отдельных производственных конвейеров, готовящих узлы будущего автомобиля. Кто-то собирает двигатель, а другие специалисты, к примеру, управляют процессом автоматической сварки кузова. Но и там и здесь четкое взаимодействие групп специалистов направлено на достижение конечного результата – производство технически сложного изделия, к примеру, машины, здания или сооружения.

От их слаженной подконтрольной работы зависит не только качественный результат, но и в первую очередь безопасность людей, которым впоследствии предстоит эксплуатация объекта. Применительно конкретно к строительству это означает точность заранее выверенных точек, горизонтали и вертикальных плоскостей. Да, профессия геодезиста высококвалифицированный труд, поскольку подразумевает владение точными, дорогими и технически сложными приборами, такими как электронный теодолит и т.д.

Но все же, для большинства строителей, хорошей практикой контроля качества работ, послужит регулярное применение более простого в обращении устройства, получившего название нивелир. К примеру, разметить высоты на строительном участке, согласно плану, будет основной частью геодезических работ. Изучив рельеф местности, строители получат необходимую информацию для оптимального выбора места под котлован и расчета точек сброса (вывода) сточных вод.

Таким образом, основной задачей нивелирования можно назвать определение разницы точек будущего здания по отношению к земле по высоте. Получив данные о отметке цоколя здания, легко рассчитать точку вывода сточной воды или же привязать по месту врезку стока канализации.

Для осуществления контроля над ходом строительных работ, у мастера прораба, могут быть разные приборы локального значения, но они не дадут общей информации по всему объекту. Так, к примеру, для определения влажности строительных материалов существуют так называемые гигрометры. Но с его помощью невозможно определить степень критического увеличения всего здания.

С помощью нивелира реально точно снять значения высот по периметру здания и затем сравнить их с контрольными точками. На фасады здания по всему периметру устанавливаются специальные маркеры, затем высчитывают превышение между ними. Таким образом, допустимым показателем можно считать нахождение всех маркеров в одной плоскости с учетом допустимых отклонений. Если это так, значит, здание можно эксплуатировать дальше, в противном случае обнаруживается просадка и возможно потребуется эвакуация.

Нивелировка и ее методы

В целом все виды превышений можно сгруппировать на основные (преимущественные) и дополнительные. Основные подразумевают:

  • Использование горизонтального визира луча зрительной трубы нивелира (геометрическое нивелирование)
  • Принцип наклона визира луча зрительной трубки теодолита (тригонометрическое нивелирование)
  • Выравнивание жидкости в сообщающихся емкостях водяного уровня (гидростатическое нивелирование)

В качестве дополнительных методов нивелирования используют:

  • Барометрическое нивелирование, которое применяют в горах и основано на разнице показателей атмосферного давления по отметкам высоты
  • Автоматическое нивелирование, применяемое при производстве строительно-дорожных работ, принцип действия которых основан на считывание показаний с датчиков, установленных на автомобиле. Они в свою очередь высчитывают наклонный вектор при перемещении
  • Стереофотограмметрическое нивелирование выполняется на сложной аппаратуре в комплексе. Основано на паре снимков с космоса или самолета, которые потом частично перекрывают и загружают в цифровое устройство. Это самый догорай и современный метод, в результате которого выводится эффект трехмерного изображения

В качестве примера можно привести аэрофотосъемку современного микрорайона. Осуществив привязку четких контуров снятой местности к системе координат, можно получить трехмерную модель, с определением точек высот с использованием метода интерполяции.

Инструментарий геометрической нивелировки

Как было указано данный тип работ проводиться с помощью нивелира. Он представляет классический прибор с оптико-механической начинкой, обеспечивающий горизонт для визирного луча. Прибор монтируется на штативе и выставляется в точку стояния, затем при помощи специальных винтов выводиться в горизонтальную плоскость. Трубка нивелира бывает двух видов, прямого и обратного изображения. Трубкой прямого изображения оснащаются в основном нивелиры современного типа.

Читайте также:
Инженерная графика, основы курса и теории чертежей

Приборы старого образца, хоть и имеют систему обратного изображения, но имеют отличную видимость. К тому же при работе с трубками обратного изображения применяется измерительная линейка в перевернутом виде и система поворотных линз. Стоимость таких приборов высока, да к тому же система линз для поворота изображения страдает одним недостатком. В условии рефракции наблюдаются незначительные искажения объектов, при использовании в жаркий период года.

И все же качество советских приборов цениться, по причине высокой четкости по сравнению с современными аналогами. В качестве примера возьмем советский теодолит и сравним его с электронным геодезическим тахеометром имеющий оптическую систему Carl Zeiss . Результат будет не в пользу последнего, так как советский хорошо подходит для локальной выверки с адекватным изображением. Если нужна глобальная картинка, необходимо использовать метод спутниковой геодезии.

Существует три типа конструкций нивелиров: цилиндрического уровня зрительной трубы, с компенсатором автоматом и электронные. Нивелиры так же принято делить по классу точности: технические (H -10), точные (Н-3, Н-3К, Н-3КЛ) и приборы высокой точности (Н-05, Н-1, Н-2).

Как можно наблюдать все нивелиры имеют маркировку буквами, основная из которых Н. Она собственно означает слово нивелир. Цифры означают погрешность (среднеквадратическую) в миллиметрах, на километр расстояния. Буквы Л и К означают лимб, а так же компенсатор, указывающие на конструктивную особенность нивелиров.

Компенсаторы предназначены для устранения погрешности при установке нивелиров, и бывают ручного и автоматического типа. То есть, вывод в горизонтальную плоскость при ручном компенсаторе выполняется непосредственно человеком, а при автоматическом соответственно самовыравниванием.

Принципиальные основы геометрического нивелирования

При работе с нивелиром существует ряд методов позволяющих эффективно добиваться точного результата:

  • Методом нивелирования из середины
  • Методом нивелирования вперед

В основе каждого из них лежит свой принцип работы. Так первый способ подразумевает отсчет показаний по геодезическим рейкам, которые устанавливаются в точках стояния, сзади и спереди нивелира. Затем снимаются данные разницы превышения и записываются в журнал. Способ расположения нивелира по отношению к рейкам получил название «метод нивелирования из середины», который является основным методом при строительстве.

Данный метод основан на принципе отсчета, по аналогии с теодолитным ходом, ведущимся с заранее известных высот, называемых реперами. Принцип хорошо иллюстрирует картинка, где есть точки А и Б. Естественно разница между точками по рекам составляет превышение, которое может быть как отрицательным, так и положительным. Данные одного превышения на местности, на практике нельзя считать окончательным, поскольку для объективной картины ее рельефа, необходимо снять как можно больше таких превышений.

Система сравнивания высот, применяемая в топографических планах, носит название «Балтийская». Она имеет начальную точку нуля Кронштадтского футштока, который в свою очередь находится на балтийском побережье. В данном случае на картинке, абсолютная высота (точка Б) рассчитывается, как h = А + а – б. Точка А – это отметка государственной системы высот, а считывание с реек ведется по отрезкам а, б.

Нивелирование методом «вперед» основано на использовании прибора и одной рейки, устанавливаемой перед ним. Сам нивелир устанавливается на заранее известную точку, а формула, по которой рассчитывается превышение, имеет вид:

h = А + i – б, где i — высота нивелира, измеряемая рулеткой. Такой способ применяется реже, так как имеет сложности в установки прибора на вертикальной поверхности стен. К тому же работа дистанционным способом намного легче и позволяет не приближаться к объектам.

Читайте также:
Поверки теодолита - устройство и классификация приборов

Здесь за начальную точку отсчета, условно принято брать урез воды водоемов сообщающихся с любым мировым океаном. Но в таком случае мы будем иметь дело с условной системой высот, точности которой будет не хватать для проведения масштабных строительных работ. И все-таки, данный принцип геометрического нивелирования, отлично подойдет для локальных строительных площадок, где не требуется увязка высот здания с региональными системами.

Тригонометрическая нивелировка

Она построена на принципе использования одного из двух измерительных приборов, тахеометра или теодолита. Для считывания превышения используют угол от горизонта до верхнего края измерительной рейки, а в случае большой удаленности объекта его вершины. К примеру, этим способом измеряют высоты опор линий электропередач. Он хоть и дает незначительную погрешность расчета, но зато позволяет производить расчеты превышений на больших расстояниях и углах рельефа местности.

Формула высоты тригонометрического измерения выглядит так: h = s * tg ν + i – б или h = S * sin ν + i – б. Значения величин подставляются в нее с учетом того, что:

  1. ν — это угол луча по отношению к горизонту
  2. s — горизонт линии
  3. S — длина отрезка визирной линии
  4. i — высота измерительного прибора
  5. б — высота визировки

Принцип гидростатического нивелирования

Гироскопы (гидроуровня) хороши для использования в любых условиях, доступны по цене, а главное позволяют определять превышения в ускоренном автоматизированном режиме. Обычно их принято использовать:

  • при монтаже оборудования крупных габаритов
  • в отделочных и в архитектурных работах
  • для выверки горизонта фундамента
  • при укладке труб и монтаже сантехнических узлов
  • для выставления горизонтальных направляющих
  • для передач отметок высоты через преграды (перегородки, барьеры, водоемы)
  • для отслеживания просадок зданий и деформации сооружений

Работа гидроуровня демонстрируется рисунком ниже, и как было указано ранее, основана на выравнивании уровня воды (любой другой жидкости, к примеру, антифриз) в сообщающихся емкостях (сосудах). Здесь для нахождения превышения h, используют разницу в отметках, со специальных шкал, нанесенных на сосуды (отметки а, б). Принцип, положенный в основу этого измерения допускает считывание превышения в условиях малых пространств. Пользование приборами такого типа, не потребуют специальных знаний, но не даст точного результата. При измерении гидроуровнем погрешность может составлять до 1 см, как в минус, так и в плюс. Еще одним недостатком применения, можно считать неудобное перемещение прибора, а точнее его соединительного шланга.

Принцип работы лазерных уровней

Современные электронные нивелиры построены на визуализации отметок проецируемых самим прибором с помощью лазера. При этом разметка может производиться лучом сразу в нескольких плоскостях предметов и помещений. В качестве примера рассмотрим работу ротационного уровня, скорость вращения луча которого, достигает 400 -550 об/мин.

Преимущество использования такого нивелира в том, что им можно производить разметку, высчитывать превышение в условиях закрытых узких пространств помещений и на открытой местности, с минимальной погрешностью и под любым углом. Работать можно, как при дневном освещении, так и в темное время суток. Его удобно использовать при поклейки плитки на стену, оклейки обоев и выставления иных конструкций. С его помощью выполняют:

  • нивелировку
  • превышение точек
  • размечать угол наклона конструкций

Лазерные уровни особенно незаменимы, там, где необходимо производить разметку на больших и удаленных плоскостях, так как они более удобны в отличие от веревочных отвесов, угольников и реечных уровней. Они безопасны в применении и относятся к 2 классу излучения. Сам луч прибора так же не представляет угрозы для человека, за исключением длительного воздействия на глаза. Все лазерные уровни ударопрочны и влагонепроницаемы, поскольку такие факторы влияют на работу и защита от них изначально заложена в разработку приборов. Для большего удобства, при интенсивном солнечном свете, рекомендовано использовать специализированные очки.

Читайте также:
Обозначение резьбы на чертежах по ГОСТу - основные типы и размеры

Все приборы необходимо подвергать проверке на точность периодично (раз в год). Желательно приобретать приборы известных марок и производителей. Использование непроверенного инструмента, может стоить вам больших ошибок, особенно при строительстве многоэтажных или многоярусных конструкций. Ошибки в сантиметрах на начальных этапах строительства, могут привести к невозможности его завершения, по причине не соответствия размеров верхних помещений или консолей, типовым завершающим конструкциям (фермам, плитам перекрытий и т.д.). Помните о том, что от кропотливой работы геодезистов, зависит весь ход строительного процесса, где задействовано множество ресурсов, как людских, так и машин (механизмов). А переделывать всю работу порой невозможно и дорого.

Привет студент

Способы и методы нивелирования

Нивелированием называют комплекс геодезических работ, связанных с измерением превышений и высот точек местности. Данные работы проводятся при решении различных инженерно-геодезических задач в строительстве, при высотной съемке местности, а также научно-технических задач при изучении динамических процессов движения земной коры, исследовании разностей уровня воды в морях и океанах, при изучении деформаций инженерных сооружений и др.

Существует несколько основных способов и методов нивелирования: геометрическое, тригонометрическое, гидростатическое, барометрическое, механическое, стереофотограмметрическое.

Геометрическое нивелирование выполняют с помощью горизонтального визирного луча, образованного прибором, например, нивелиром. Превышение между точками получают как разность отсчетов по рейкам, установленных в этих точках.

При использовании высокоточных нивелиров и соблюдении специальных методик измерений может быть обеспечена точность определения превышений (передачи абсолютных высот) до 0, 5 – 0, 7 мм на 1 км хода, до 0, 05 – 0, 10 мм и менее – на коротких базах, т. е. при сравнительно небольших (до 20 м) расстояниях между точками. При техническом нивелировании точность передачи высот составляет 20 – 50 мм на 1 км хода.

Указанный большой диапазон точности измерений (от 0, 05 до 50 мм) позволяет применять данный способ практически при решении любых инженерно-геодезических задач по определению превышений и высот точек. Кроме того, способ геометрического нивелирования по исполнению работ сравнительно прост, не требует использования громоздкого оборудования, вычислительные действия могут выполняться непосредственно в поле.

Подробно выполнение работ методом геометрического нивелирования будет рассмотрено ниже в последующих параграфах настоящей главы.

Тригонометрическое нивелирование выполняют наклонным визирным лучом, образованным, например, оптической системой теодолита. Часто такой вид нивелирования используют при создании высотного обоснования теодолитных ходов, при передаче высот через недоступные расстояния, при больших уклонах местности, в горных выработках, когда наблюдаемые точки находятся в кровле выработки, а также в выработках, имеющих значительный уклон.

При соответствующей организации работ погрешность в определении превышения данным способом может достигать 0, 1 – 0, 3 м на 1 км хода. На небольших базах при использовании точных и высокоточных приборов превышения можно определять с точностью до 1 – 2 мм.

Очевидно, что при использовании нивелирных реек и установке угла наклона визирной оси зрительной трубы v = 0 о (при установке на шкале вертикального круга значения места нуля) теодолитом можно реализовать способ геометрического нивелирования.

Следующие виды нивелирования (барометрическое, гидростатическое, радиолокационное) относятся к физическим методам нивелирования.

Барометрическое нивелирование основано на изменении атмосферного давления с изменением высоты точки местности. Точность этого метода небольшая, от 1 до 5 м, однако часто барометрическое нивелирование применяют геологи при поисковых работах в горной и значительно пересеченной местности, при больших перепадах высот.

Для нивелирования используют барометры-анероиды, в показания которых вводят поправки за влияние внешних условий. Поскольку атмосферное давление в каждой точке изменяется по метеорологическим условиям, то для повышения точности ходы барометрического нивелирования прокладывают замкнутыми (с возвращением к исходной точке), либо разомкнутыми (между точками с известными высотами).

Читайте также:
Теодолитный ход - определение, назначение, основные виды и схемы

При гидростатическом нивелировании используется свойство жидкостей устанавливаться в сообщающихся сосудах на одном уровне. На измерительных колбах 1 и 2 , заполненных жидкостью, имеются одинаковые шкалы, по которым производят отсчеты а и b уровня жидкости в точках А и В. Разность отсчетов характеризует превышение:

Погрешности в определении превышений при использовании различных конструкций гидронивелиров могут находиться в пределах от 0, 1 до 2 мм. При измерениях с точностью до 1 – 2 мм отсчеты по шкалам берутся визуально. При более точных измерениях уровень жидкости в каждом из сосудов регистрируют электрическим способом с помощью электрического контакта с микрометренным винтом, закрепленного на сосуде (в этом случае используется токопроводящая жидкость).

Нивелирование

Нивелирование — определение разности высот двух или многих точек земной поверхности относительно условного уровня (напр., уровня океана, реки и пр.), т.е определение превышения. Существуют следующие способы нивелирования:

Содержание

Геометрическое нивелирование

Во время геометрического нивелирования превышение между точками получают как разность отсчётов по рейкам при горизонтальном положении визирной оси нивелира. Этот метод является наиболее простым и точным, но позволяет с одной постановки прибора получить превышение не более длины рейки, поэтому при больших превышениях в горной местности его эффективность падает.

Определение превышения заключается в визировании горизонтальным лучом с помощью нивелира и отсчета разности высот по рейкам. где — отсчет по задней рейке; — отсчет по передней рейке;

Точность отсчета по рейкам составляет от 1-2 мм (техническое нивелирование) до 0.1 мм (нивелирование I класса).

На рисунке показано нивелирование методом «из середины», также существует метод «вперед»

Тригонометрическое нивелирование

При тригонометрическом нивелировании превышение между точками определяют по измеренным вертикальным углам и расстояниям между точками (горизонтальным проложениям). Тригонометрическое нивелирование позволяет с одной станции определить практически любое превышение между точками, имеющими взаимную видимость, но его точность ограничена из-за недостаточно точного учёта влияния на величины вертикальных углов оптического преломления и уклонений отвесных линий, особенно в горной местности.

Превышение определяется по измеренному теодолитом (кипрегелем, эклиметром) углу наклона линии визирования с одной точки на другую (α) и расстоянию между этими точками (S). Тригонометрическое нивелирование применяется при топографической съемке и других работах.

Барометрическое нивелирование

Превышение определяется по значениям атмосферного давления при помощи полной барометрической формулы

Гидростатическое нивелирование

Основано на свойстве жидкости в сообщающихся сосудах на одном уровне. Этот метод имеет высокую точность, позволяет определять разность высот между точками при отсутствии взаимной видимости, но измеряемая разность высот ограничена длиной наибольшей из трубок, соединённых шлангами.

Построение плоскостей

Вертикальное проектирование или построение плоскостей выполняется электронно-механическими прибором Зенит-прибором или лазерным уровнем.

Зенит-прибором (прибором оптического вертикального проецирования) переносят точки по вертикали. При возведении высоких зданий и сооружений положение стен и других элементов на каждом этаже проверяют от осей. Точки пересечения осей проецируют оптическим или лазерным лучом зенит-прибора . [1] .

Отметки проецируются с использованием принципа вращения лазерного луча и оптической системы, позволяющей развернуть луч в линию. Основное достоинство лазерного уровня — простота в работе, не требующая специальных навыков по настройке прибора, и возможность проведения работ только одним человеком. Такие уровни применяются в строительстве. Многие модели лазерных уровней имеют также возможность построения наклонных плоскостей и отвесных линий.

Примечания

  1. Приборы и инструменты для геодезических работ на строительстве

Wikimedia Foundation . 2010 .

  • Ниве
  • Нивищи (Смоленская область)

Полезное

Смотреть что такое “Нивелирование” в других словарях:

НИВЕЛИРОВАНИЕ — (от сл. нивелир). Определение разности высоты мест. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИВЕЛИРОВАНИЕ от слова нивелир. Определение относительной высоты мест. Объяснение 25000 иностранных слов, вошедших … Словарь иностранных слов русского языка

Читайте также:
Обозначение резьбы на чертежах по ГОСТу - основные типы и размеры

нивелирование — Определение высот точек земной поверхности или других точек над исходной точкой или над уровнем моря. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] нивелирование Определение превышений. [ГОСТ 22268 76]… … Справочник технического переводчика

нивелирование — обезличение, обезличивание, уравнивание, сглаживание, нивелировка Словарь русских синонимов. нивелирование сущ., кол во синонимов: 7 • аэронивелирование (1) … Словарь синонимов

нивелирование — я, ср. niveler. 1. Определение высот точек земной поверхности относительно некоторой точки выбранной на месности или над уровнем моря. БАС 1. 2. Нивелированием называют также, но неправильно, уравнивание местности или обыкновенно площади, что… … Исторический словарь галлицизмов русского языка

НИВЕЛИРОВАНИЕ — определение высот точек земной поверхности относительно некоторой избранной точки или над уровнем моря. Различают геометрические, тригонометрические и др. виды нивелирования … Большой Энциклопедический словарь

НИВЕЛИРОВАНИЕ — НИВЕЛИРОВАНИЕ, нивелирования, мн. нет, ср. (геод. и книжн.). Действие по гл. нивелировать и нивелироваться. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

нивелирование — НИВЕЛИРОВАТЬ, рую, руешь; анный; сов. и несов., что. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

НИВЕЛИРОВАНИЕ — нивелировка, гипсометрия (Levelling) определение разности высот двух или нескольких точек земной поверхности. Высота точки определяется или от уровня океана (абсолютная высота), или от какой нибудь условной точки (условная высота). Самойлов К. И … Морской словарь

НИВЕЛИРОВАНИЕ — определение разности высот точек на местности. Различают три вида Н.: геометрическое, тригонометрическое и барометрическое (или физическое). Геометрическое Н. заключается в визировании точек по горизонтальному направлению. Определив разности… … Технический железнодорожный словарь

Нивелирование — область геодезических измерений, связанная с определением высот (разностей высот). Источник: ИЗМЕРЕНИЯ ГЕОДЕЗИЧЕСКИЕ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ. ОСТ 68 15 2001 (утв. Приказом Роскартографии от 24.04.2001 N 93 пр) … Официальная терминология

Обозначение резьбы на чертежах по ГОСТу – основные типы и размеры

Единая система конструкторской документации

Unified system for design documentation. Image of screw

Дата введения 1971-01-01

1. РАЗРАБОТАН И ВНЕСЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 28 мая 1968 г. N 755

3. Стандарт соответствует СТ СЭВ 284-76

5. ИЗДАНИЕ (август 2007 г.) с Изменением N 1, утвержденным в апреле 1987 г. (ИУС 7-87)

1. Настоящий стандарт устанавливает правила изображения и нанесения обозначения резьбы на чертежах всех отраслей промышленности и строительства.

Стандарт соответствует СТ СЭВ 284-76.

2. Резьбу изображают:

а) на стержне – сплошными основными линиями по наружному диаметру резьбы и сплошными тонкими линиями – по внутреннему диаметру.

На изображениях, полученных проецированием на плоскость, параллельную оси стержня, сплошную тонкую линию по внутреннему диаметру резьбы проводят на всю длину резьбы без сбега, а на видах, полученных проецированием на плоскость, перпендикулярную к оси стержня, по внутреннему диаметру резьбы проводят дугу, приблизительно равную окружности, разомкнутую в любом месте (черт.1, 2);

б) в отверстии – сплошными основными линиями по внутреннему диаметру резьбы и сплошными тонкими линиями – по наружному диаметру.

На разрезах, параллельных оси отверстия, сплошную тонкую линию по наружному диаметру резьбы проводят на всю длину резьбы без сбега, а на изображениях, полученных проецированием на плоскость, перпендикулярную к оси отверстия, по наружному диаметру резьбы проводят дугу, приблизительно равную окружности, разомкнутую в любом месте (черт.3, 4).

Читайте также:
Поверки теодолита - устройство и классификация приборов

Сплошную тонкую линию при изображении резьбы наносят на расстоянии не менее 0,8 мм от основной линии и не более величины шага резьбы.

3. Резьбу, показываемую как невидимую, изображают штриховыми линиями одной толщины по наружному и по внутреннему диаметру (черт.5).

4. Линию, определяющую границу резьбы, наносят на стержне и в отверстии с резьбой в конце полного профиля резьбы (до начала сбега). Границу резьбы проводят до линии наружного диаметра резьбы и изображают сплошной основной или штриховой линией, если резьба изображена как невидимая (черт.6-8).

5. Штриховку в разрезах и сечениях проводят до линии наружного диаметра резьбы на стержнях и до линии внутреннего диаметра в отверстии, т.е. в обоих случаях до сплошной основной линии (см. черт.3, 4, 7, 8).

6. Размер длины резьбы с полным профилем (без сбега) на стержне и в отверстии указывают, как показано на черт.9а и 10а.

Размер длины резьбы (со сбегом) указывают, как показано на черт.9б и 10б.

При необходимости указания величины сбега на стержне размеры наносят, как показано на черт.9в.

Сбег резьбы изображают сплошной тонкой прямой линией, как показано на черт.9б, в и 10б.

Недорез резьбы, выполненной до упора, изображают, как показано на черт.11а и в.

Допускается изображать недорез резьбы, как показано на черт.11б и г.

(Измененная редакция, Изм. N 1).

7. Основную плоскость конической резьбы на стержне, при необходимости, указывают тонкой сплошной линией, как показано на черт.12.

8. На чертежах, по которым резьбу не выполняют, конец глухого резьбового отверстия допускается изображать, как показано на черт.13 и 14, даже при наличии разности между глубиной отверстия под резьбу и длиной резьбы.

9. Фаски на стержне с резьбой и в отверстии с резьбой, не имеющие специального конструктивного назначения, в проекции на плоскость, перпендикулярную к оси стержня или отверстия, не изображают (черт.15-17). Сплошная тонкая линия изображения резьбы на стержне должна пересекать линию границы фаски (см. черт.15).

10. Резьбу с нестандартным профилем показывают одним из способов, изображенных на черт.18, со всеми необходимыми размерами и предельными отклонениями. Кроме размеров и предельных отклонений резьбы, на чертеже указывают дополнительные данные о числе заходов, о левом направлении резьбы и т.п. с добавлением слова “Резьба”.

11. На разрезах резьбового соединения в изображении на плоскости, параллельной его оси, в отверстии показывают только часть резьбы, которая не закрыта резьбой стержня (черт.19, 20).

12. Обозначения резьб указывают по соответствующим стандартам на размеры и предельные отклонения резьб и относят их для всех резьб, кроме конических и трубной цилиндрической, к наружному диаметру, как показано на черт.21, 22.

Обозначения конических резьб и трубной цилиндрической резьбы наносят, как показано на черт.23.

Примечание. Знаком “*” отмечены места нанесения обозначения резьбы.

13. Специальную резьбу со стандартным профилем обозначают сокращенно Сп и условным обозначением резьбы.

(Измененная редакция, Изм. N 1).

Электронный текст документа

подготовлен АО “Кодекс” и сверен по:

Единая система конструкторской документации:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: