Компланарные векторы определение в пространстве и плоскости, доказательство

Компланарные векторы, исследование системы векторов на компланарность.

В этой статье мы поговорим о компланарности векторов. Сначала вспомним определение компланарности и получим необходимое и достаточное условие компланарности трех векторов в трехмерном пространстве. Далее разберемся с задачей исследования системы из n векторов на компланарность, рассмотрим решения характерных примеров.

Навигация по странице.

  • Необходимое и достаточное условие компланарности трех векторов.
  • Исследование системы векторов на компланарность, примеры и решения.

Необходимое и достаточное условие компланарности трех векторов.

Напомним определение компланарных векторов.

Векторы называются компланарными, если они принадлежат одной или параллельным плоскостям.

Два вектора и трехмерного пространства всегда компланарны. Это утверждение легко доказать. Пусть a и b – прямые, на которых лежат векторы и соответственно. Проведем через начало вектора прямую b1 , параллельную прямой b , а через начало вектора прямую a1 , праллельную прямой a . Плоскости, образуемые прямыми a и b1 , а так же прямыми b и a1 , параллельны по построению, а векторы и принадлежат им. Следовательно, векторы и компланарны.

А как же определить, являются ли три вектора компланарными?

Для этого существует необходимое и достаточное условие компланарности трех векторов в пространстве. Оно основано на понятии смешанного произведения векторов. Сформулируем его в виде теоремы.

Для компланарности трех векторов и трехмерного пространства необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Пусть , докажем что векторы и компланарны.

Так как , то векторы и перпендикулярны в силу необходимого и достаточного условия перпендикулярности двух векторов. С другой стороны, по определению векторного произведения вектор перпендикулярен и вектору и вектору . Следовательно, векторы и компланарны, так как перпендикулярны одному вектору .

Пусть теперь векторы и компланарны, докажем равенство нулю смешанного произведения .

Так как векторы и компланарны, то вектор перпендикулярен каждому из них, следовательно, скалярное произведение вектора на равно нулю, что означает равенство нулю смешанного произведения .

Итак, теорема полностью доказана.

Покажем применение доказанного условия компланарности трех векторов к решению задач.

Компланарны ли векторы , заданные в прямоугольной системе координат.

Вычислим их смешанное произведение по координатам:

Так как мы получили ноль, то условие компланарности выполнено, следовательно, заданные векторы компланарны.

Необходимое и достаточное условие компланарности векторов можно использовать для проверки принадлежности четырех точек пространства А, В, С и D одной плоскости. Для этого находим координаты векторов и вычисляем их смешанное произведение. Если оно равно нулю, то точки лежат в одной плоскости, в противном случае – не лежат в одной плоскости.

Принадлежат ли точки одной плоскости?

Найдем координаты векторов (при необходимости смотрите статью нахождение координат вектора по координатам точек его начала и конца):

Теперь вычисляем смешанное произведение этих векторов

Так как смешанное произведение векторов отлично от нуля, то векторы не компланарны, следовательно, точки А, В, С и D не лежат в одной плоскости.

Исследование системы векторов на компланарность, примеры и решения.

А как же быть, если требуется установить компланарность системы векторов, число векторов которой больше трех?

Давайте ответим на этот вопрос и получим условие компланарности системы из n векторов трехмерного пространства.

В предыдущем пункте мы показали, что для компланарности трех векторов и необходимо и достаточно равенство нулю их смешанного произведения: . Так как смешанное произведение трех векторов в координатной форме представляет собой определитель матрицы, строками которой являются координаты векторов и , то условие компланарности можно записать в виде . Вспомнив понятие ранга матрицы, последнее равенство можно интерпретировать следующим образом: ранг матрицы, строками которой являются координаты компланарных векторов и , меньше трех.

Читайте также:
Арктангенс - что это такое, свойства и функции, формулы

Обобщив последнее утверждение, мы получим необходимое и достаточное условие компланарности системы из n векторов трехмерного пространства: для компланарности системы из n векторов трехмерного пространства необходимо и достаточно, чтобы ранг матрицы, строками которой являются координаты векторов системы, был меньше трех.

Компланарны ли векторы

Составим матрицу, строками которой примем координаты данных векторов

Сразу легко отыскать минор второго порядка, отличный от нуля, .

Переберем окаймляющие его миноры третьего порядка:

Все они равны нулю, следовательно, ранг матрицы равен двум, поэтому, векторы заданной системы векторов компланарны в силу выполнения необходимого и достаточного условия компланарности.

Компланарные векторы

  • Что такое компланарные векторы
  • Условия компланарности и линейная зависимость векторов
    • Линейная зависимость
    • Условия компланарности
  • Теоремы, связанные с условием компланарности трех векторов
  • Пример задачи на компланарность векторов

Что такое компланарные векторы

Векторы называются компланарными, если лежат в одной или параллельных плоскостях.

Это определение справедливо только для трех и более векторов, так как для двух направленных отрезков всегда можно найти плоскость, параллельную им.

Условия компланарности и линейная зависимость векторов

Среди условий компланарности векторов встречается понятие линейной зависимости, которое следует разобрать перед тем, как перейти непосредственно к условиям.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Линейная зависимость

Линейно зависимыми называются вектора (overline,;overline,;dots;,;overline;) , которые можно составить в линейную комбинацию, равную нулю: (lambda_1cdotoverline+;lambda_2cdotoverline+dots+;lambda_noverline;=0.)

Линейная комбинация — вектор, составленный из суммы векторов (overline,;overline,;dots;,;overline;) и коэффициентов разложения (lambda_<1,>;lambda_2,;dots;,;lambda_n.)

Существует пять критериев и свойств линейной зависимости векторов:

  1. Хотя бы один из векторов можно представить в виде линейной комбинации других.
  2. В n-мерном пространстве любые n+1 векторов линейно зависимы.
  3. Хотя бы один из векторов — нулевой.
  4. Если часть системы векторов линейно зависимы, то это справедливо и для остальных.
  5. Если одна система векторов может быть выражена через другую и содержит больше векторов, то такая система линейно зависима.

Условия компланарности

Для неограниченного числа векторов справедливо следующее: если среди них есть не более двух линейно независимых векторов, то они компланарны.

На практике чаще всего встречаются задачи с тройками векторов. Для них существуют и другие условия компланарности:

  1. Если три вектора линейно зависимы, то они компланарны.
  2. Смешанное произведение компланарных векторов равняется нулю.

Теоремы, связанные с условием компланарности трех векторов

Правило, согласно которому три вектора компланарны, если их смешанное произведение равно нулю, проистекает из теоремы. Его также называют признаком и критерием компланарности векторов. Доказать данное утверждение можно следующим образом:

Пусть смешанное произведение ((overline atimesoverline b)cdotoverline c=0) . Векторы ((overline atimesoverline b)) и (overline c) — перпендикулярны, так как их скалярное произведение равняется нулю.

В то же время, результатом векторного произведения является вектор, перпендикулярный перемножаемым. Таким образом, векторы overline a,overline b,overline c перпендикулярны одному и тому же вектору (overline atimesoverline b), то есть лежат в параллельных плоскостях. Значит, векторы компланарны.

Читайте также:
Степенные функции - что это такое, виды, свойства, примеры читать статью онлайн

Для проверки, к доказательству данной теоремы можно подойти с другой стороны:

Пусть векторы overline a,overline b,overline c компланарны.

Необходимо доказать, что их смешанное произведение ((overline atimesoverline b)cdotoverline c) равняется нулю. Так как данные вектора компланарны, то ((overline atimesoverline b)) перпендикулярен каждому из них.

Отсюда следует, что его скалярное произведение с вектором overline c будет равняться нулю. Это, в свою очередь, означает, что смешанное произведение ((overline atimesoverline b)cdotoverline c=0.)

Пример задачи на компланарность векторов

Задача

Даны точки A(1, 2, -1), B(0, -1, 5), C(-1, 2, 1) и D(2, 1, 3). Проверить, принадлежат ли они одной плоскости.

Решение

Сперва необходимо построить на основе имеющихся точек векторы (overline,;overline,;overline:)

Чтобы проверить, принадлежать ли точки одной плоскости, необходимо найти смешанное произведение полученных векторов. Если оно равняется нулю, то векторы компланарны, следовательно, точки лежат в одной плоскости. В противном случае ответ на поставленный в условии вопрос будет отрицательным.

Смешанное произведение рассчитывается по формуле нахождения определителя матрицы:

Полученное число не равно нулю, следовательно, векторы некомпланарны. Это значит, что точки не лежат в одной плоскости.

Компланарные векторы

Вы будете перенаправлены на Автор24

Понятие компланарности векторов

Для начала рассмотрим, какие вектора называются компланарными.

Два вектора, которые параллельны одной плоскости называются компланарными.

Рассмотри, компланарны ли векторы a, b и c на следующем примере. Пусть нам даны три вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Тогда

Пары векторов $overrightarrow, и overrightarrow$, $overrightarrow$ и $overrightarrow$ и $overrightarrow$ и $overrightarrow$ компланарны между собой.

Если два из этих векторов, к примеру $overrightarrow, и overrightarrow$, коллинеарны, то векторы $overrightarrow, overrightarrow$ и $overrightarrow$ компланарны.

Если $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в одной плоскости, то они компланарны.

Для дальнейшего рассмотрения напомним следующую теорему.

Произвольный вектор $overrightarrow

$ можно разложить по двум неколлинеарным векторам $overrightarrow, $ и $overrightarrow$ с единственными коэффициентами разложения, то есть

Теоремы, связанные с условием компланарности трех векторов

Если один из трех данных векторов можно разложить по двум другим векторам, то есть

Доказательство.

Здесь возможны два случая.

Теорема доказана.

Готовые работы на аналогичную тему

Доказательство.

[overrightarrow=alpha overrightarrow+beta overrightarrow]

Причем это разложение единственно.

Которое также единственно.

Теорема доказана.

Признак и критерий компланарности векторов

Рисунок 1. Условие компланарности векторов. Автор24 — интернет-биржа студенческих работ

Пример задачи

Пусть нам дан куб $ABCDA_1B_1C_1D_1$. Разложите вектор $overrightarrow$ по векторам $overrightarrow и overrightarrow$.

Рисунок 2. Разложение по векторам. Автор24 — интернет-биржа студенческих работ

Решение.

Так как плоскости $(ABC)$ и $<(A>_1B_1C_1)$ параллельны, и векторы $overrightarrow$, $overrightarrow и overrightarrow$ параллельны, следовательно, по определению являются компланарными. Тогда, по теореме 1, вектор $overrightarrow$ можно разложить по векторам $overrightarrow и overrightarrow$ единственным образом.

Используя свойства сложения двух векторов, получим

Ответ: $overrightarrow+overrightarrow$.

Пусть нам дан параллелепипед. Найти тройки компланарных векторов, изображенных в параллелепипеде на рисунке ниже.

Читайте также:
Выделение полного квадрата многочлена формулы выделения квадратов

Рисунок 3. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в плоскости $(BOA)$ то эти векторы являются компланарными.

Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow<_1>$ лежат в плоскости $(BOC)$ то эти векторы являются компланарными.

Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в плоскости $(COE)$ то эти векторы являются компланарными.

Доказать, что векторы с координатами $left(1, 13, 2right), left(3, -5, 2right)и (5,-1,4)$ компланарны.

Решение.

Применим признак компланарности трех векторов.

Рисунок 4. Нахождение определителя. Автор24 — интернет-биржа студенческих работ

Следовательно, это векторы компланарны, ч. т. д.

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Понятие вектора в пространстве

Напомним, что в курсе планиметрии мы уже подробно изучали вектора и действия с ними. При этом предполагалось, что все вектора располагаются в одной плоскости. Однако можно расширить понятие вектора так, чтобы они использовались и в стереометрии. В таком случае вектора уже могут располагаться в различных плоскостях.

Начнем с определения вектора:

Конец вектора обозначают с помощью стрелки. Посмотрим на рисунок:

Здесь показаны сразу три вектора:

У вектора АВ начало находится в точке А, а конец – в точке В. Аналогично у вектора С D точка С – это начало, а D – это конец. В обоих случаях начало и конец – это различные точки, поэтому АВ и CD именуют ненулевыми векторами. Если же начало и конец находятся в одной точке, например в Т, то получается нулевой вектор ТТ. Всякую точку в пространстве можно рассматривать как нулевой вектор:

Длина вектора АВ – это длина соответствующего ему отрезка АВ. Для обозначения длины используют квадратные скобки:

Естественно, что нулевой вектор имеет нулевую длину.

Далее напомним понятие коллинеарных векторов:

Коллинеарные вектора могут быть либо сонаправленными, либо противоположно направленными. Сонаправленные вектора находятся на сонаправленных лучах. Рассмотрим пример с кубом:

Здесь показаны вектора AD и ВС. Они сонаправленные, этот факт записывается так:

Вектора AD и FE располагаются на скрещивающихся прямых, поэтому они не коллинеарны. Их нельзя считать ни сонаправленными, ни противоположно направленными.

Сонаправленные вектора, имеющие одинаковую длину, именуются равными.

Рассмотрим несколько простейших задач.

Задание. В прямоугольном параллелепипеде АВС DA 1 B 1 C 1 D 1 известны три его измерения:

Решение. Для нахождения длин этих векторов достаточно вычислить длину отрезков СВ, DB и DB 1. Проще всего вычислить СВ, ведь отрезки СВ и AD одинаковы как стороны прямоугольника АВ CD :

Задание. На рисунке показан правильный тетраэдр АВС D . Точки M , N , P и Q являются серединами тех сторон, на которых они располагаются. Какие вектора из отмеченных на рисунке равны между собой?

Решение. Легко заметить, что вектора DP и PC находятся на одной прямой DC и сонаправлены, при этом их длина одинакова, ведь Р – середина DC . Тогда эти вектора по определению равны:

Вектора АМ и МВ также коллинеарны и имеют одинаковую длину, но они противоположно направлены, а потому равными не являются.

Читайте также:
Коллинеарные векторы - определение, свойства, обозначения

Теперь заметим, что отрезки MN , MQ , PQ и NP – это средние линии в ∆ ABD , ∆ АВС, ∆ BCD и ∆ ACD соответственно. По свойству средней линии получаем, что MN || BD , PQ || BD , MQ ||АС и NP ||АС. Отсюда по свойству транзитивности параллельности получаем, что MN || PQ и MQ || NP . Это значит, что четырехугольник MQPN – это параллелограмм, а у него противоположные стороны одинаковы:

Операции над векторами

Правила сложения векторов в стереометрии не отличаются от правил в планиметрии. Пусть надо сложить два вектора, а и b . Для этого отложим вектор а от какой-нибудь точки А, тогда его конец окажется в некоторой точке В. Далее от В отложим вектор b , его конец попадет в какую-то точку С. Тогда вектор АС как раз и будет суммой a и b :

Такой метод сложения векторов именуется правилом треугольника. Если нужно сложить больше двух векторов, то используют правило многоугольника. В этом случае необходимо каждый следующий вектор откладывать от конца предыдущего. При этом в стереометрии вектора могут располагаться в различных плоскостях, то есть они на самом деле многоугольник не образуют:

Напомним, что в планиметрии существовали так называемые противоположные вектора. Есть они и в стереометрии:

Главное свойство противоположных векторов заключается в том, что в сумме они дают нулевой вектор:

Заметим, что для получения противоположного вектора достаточно поменять его начало и конец, то есть в записи вектора обозначающие его буквы надо просто записать в обратном порядке:

C помощью противоположного вектора легко определить операцию вычитания векторов. Чтобы из вектора а вычесть вектор b , надо всего лишь прибавить к a вектор, противоположный b :

Далее рассмотрим умножение вектора на число. Пусть вектор а умножается на число k . В результате получается новый вектор b , причем

1) b и a будут коллинеарными векторами;

2) b будет в k раз длиннее, чем вектор a .

Если k – положительное число, то вектора a и b будут сонаправленными. Если же k a и b будут направлены противоположно.

Уточним, что если | k | b будет не длиннее, а короче вектора a . Наконец, если k = 0, то и b будет иметь нулевую длину, то есть b окажется нулевым вектором.

Задание. Дан параллелепипед АВС D А1В1С1 D 1. Постройте вектор, который будет являться суммой векторов:

Решение. В каждом случае необходимо заменить один из векторов в сумме на другой равный ему вектор так, чтобы можно было применить правило треугольника.

В задании а) вектор А1 D 1 заменить равным ему вектором ВС. В итоге получится вектор АС.

В задании б) заменяем А D 1 на вектор ВС1. Также можно было бы заменить АВ на D 1 C 1. В обоих случаях сумма окажется равной АС1.

В задании в) удобно DA заменить на C 1В1, тогда искомой суммой будет вектор С1В.

В задании г) производим замену DD 1 на равный ему вектор BB 1. Тогда сумма DB и BB 1– это вектор DB 1.

В задании д) необходимо заменить ВС на В1С1. В итоге получаем вектор DC :

Задание. В пространстве отмечены точки А, В, С и D . Выразите вектор АВ через вектора:

Читайте также:
Область значения функции как определить и найти, примеры решения

Решение. В случае а) сначала запишем очевидное равенство векторов, вытекающее из правило многоугольника:

Обратите внимание, что здесь у каждого следующего слагаемого начальная точка совпадает с конечной точкой предыдущего слагаемого, поэтому равенство и справедливо:

Однако по условию а) нам надо использовать другие вектора для выражения АВ. Мы можем просто заменить вектора CD и DB на противоположные:

Теперь можно составить и выражение для АВ:

Аналогично решаем и задания б) и в):

Задание. Р – вершина правильной шестиугольной пирамиды. Докажите, что сумма векторов, совпадающих с ребрами этой пирамиды и начинающихся в точке Р, в точности равна сумме векторов, которые совпадают с апофемами пирамиды и при этом также начинаются в точке Р.

Решение. Обозначим вершины буквами А1, А2, … А6, а середины сторон шестиугольника, лежащего в основании, буквами Н1, Н2, … Н6, как это показано на рисунке:

Нам надо показать, что сумма красных векторов равна сумме черных векторов:

Теперь отдельно построим правильный шестиугольник, лежащий, в основании пирамиды:

Ясно, что вектора, образованные сторонами этого шестиугольника, в сумме дают нулевой вектор (по правилу многоугольника):

Так как точки Н1, Н2, … Н6 – середины сторона, то вектора Н6А6, Н5А5,…Н1А1 будут вдвое короче векторов А1А6, А6А5, … А2А1. При этом они находятся на одних прямых, поэтому справедливы равенства:

Таким образом нам удалось из верного равенства (3) доказать (2), из которого в свою очередь следует справедливость и (1), ч. т. д.

Задание. Упростите выражения:

Решение. Здесь надо просто применить законы сложения и умножения векторов, как это делалось и в курсе планиметрии. Сначала раскрываем скобки, а потом приводим подобные слагаемые:

Компланарные векторы

Если мы отложим несколько векторов от одной точки, то они либо будут находиться в одной плос-ти, либо располагаться в различных плос-тях. В первом случае их именуют компланарными векторами, а во втором – некомпланарными.

Любые два вектора будут компланарны, ведь при их откладывании от одной точки мы получаем две пересекающихся прямых, а через них всегда можно провести плос-ть. Однако если векторов более двух, то они могут быть как компланарны, так и некомпланарны.

Рассмотрим для примера параллелепипед:

Здесь вектора АС, АВ и АD компланарны, так как все они принадлежат одной грани (то есть плос-ти) АВСD. А вектора АВ, АD и АА1 некомпланарны, ведь через них нельзя провести одну плос-ть.

Очевидно, что если из трех векторов любые два коллинеарны, то вся тройка векторов компланарна, ведь при откладывании векторов от одной точки коллинеарные вектора окажутся на одной прямой.

Существует признак компланарности векторов:

Напомним, что подразумевается под разложением вектора. Пусть есть вектора а, b и c. Если существуют такие числах и y, при которых выполняется равенство

то говорят, что вектор с разложен по векторам а и b, причем числа xи y называются коэффициентами разложения.

Докажем сформулированный признак. Пусть есть три вектора а, b и c, а также числа xи y, такие, что

Читайте также:
Правильный треугольник определение, основные свойства и признаки

Эти вектора находятся в одной плос-ти ОАВ. Теперь от той же точки О отложим вектора ха и уb, концы которых окажутся в точках А1 и В1:

Естественно, что вектора ОА1 и ОВ1 также окажутся в плос-ти ОАВ. Тогда и их сумма будет принадлежать этой плос-ти, а эта сумма как раз и есть вектор с:

В итоге получили, что а, b и с располагаются в одной плос-ти, то есть они компланарны.

Справедливо и обратное утверждение. Если вектора а, b и с компланарны, но а и b неколлинеарны, то вектор с можно разложить на вектора a и b. Это утверждение прямо следует из изученной в 9 классе теоремы о разложении векторов. Важно отметить, что коэффициенты такого разложения определяются однозначно.

Для сложения тройки некомпланарных векторов можно применить так называемое правило параллелепипеда. Если есть три некомпланарных вектора, то можно отложить их от одной точки О и далее построить параллелепипед, в котором эти вектора будут ребрами. Тогда диагональ этого параллелепипеда, выходящая из точки О, и будет суммой этих трех векторов:

Разложение вектора на некомпланарные вектора

Иногда вектор можно разложить не на два, а на три вектора. Выглядит такое разложение так:

Для доказательства рассмотрим три некомпланарных вектора а, bи c, а также произвольный вектор р. Отложим их от одной точки О. Обозначим концы этих векторов большими буквами А, В, С и Р:

Через ОВ и ОА можно провести некоторую плос-ть α. Точка С ей принадлежать не может, ведь ОА, ОВ и ОС – некомпланарные вектора. Проведем через Р прямую, параллельную ОС. Так как ОС пересекает α, то и параллельная ей прямая также пересечет α в некоторой точке Р1. (Примечание. Если Р принадлежит α, то точки Р и Р1 совпадут, то есть вектор Р1Р будет нулевым).

Далее через точку Р1 в плос-ти α проведем прямую, параллельную ОВ, которая пересечет ОА в точке Р2. Заметим, что вектор ОР2 находится на той же прямой, что и вектор ОА, то есть они коллинеарны, поэтому существует такое число х, что

Итак, мы показали, что у произвольного вектора p есть разложение на заранее заданные некомпланарные вектора. Осталось показать, что существует только одно такое разложение. Докажем это методом от противного. Пусть есть второе разложение с другими коэффициентами х1, у1 и z1:

В правой части находятся три вектора, которые в сумме нулевой вектор. По правилу сложения векторов это означает, что эти вектора образуют треугольник, то есть находятся в одной плос-ти:

Значит, они компланарны. Тогда компланарны и вектора a, b и с, что противоречит условию теоремы. Значит, второго разложения р на заданные некомпланарные векторы не существует, ч. т. д.

Задание. АВСD и А1В1С1D1 – параллелограммы, располагающиеся в разных плос-тях. Докажите, что тройка векторов ВВ1, СС1 и DD1 компланарна.

Решение. Сначала построим рисунок по условию задачи:

Для доказательства используем признак компланарности векторов. Для этого надо один из векторов, отмеченных на рисунке красным, разложить на два других вектора.

В результате нам удалось разложить СС1 на вектора BB1 и CC1. Значит, эти три вектора коллинеарны.

Читайте также:
Подобные треугольники признаки подобия, свойства, теоремы об отношении площадей

Задание. В параллелепипеде АВСDA1B1C1D1 запишите разложение вектора BD1 по векторам ВА, ВС и ВВ1.

Решение. Сначала представим вектор BD1 как сумму трех векторов:

Теперь заметим, что вектора С1D1 и ВА соответствуют ребрам параллелепипеда. Эти ребра одинаковы по длине и параллельны, поэтому и вектора будут равными. Аналогично равны вектора СС1 и ВВ1:

Задание. АВСD – тетраэдр, а точка К делит его ребро ВС пополам. Разложите вектор DK по векторам DA, AB и AC.

Решение. Сначала запишем очевидное выражение для вектора DK:

Задание. В точке М пересекаются медианы треугольника АВС, а О – произвольная точка в пространстве. Разложите вектор ОМ по векторам ОА, ОВ и ОС.

Решение. Медиану, проходящую через точку А, мы обозначим как АА1, то есть А1 – это середина отрезка ВС. Также буквой К обозначим середину ОВ:

Сначала разложим вектор ОА1 на ОВ и ОС. Это можно сделать, ведь они компланарны. КА1 – это средняя линия ∆ОСВ, поэтому КА1||ОС и КА1 вдвое короче ОС. Это значит, что

Так как АА1 – медиана, то точка М делит ее в отношении 2:1. Отсюда вытекает следующее соотношение:

Только что решенная задача может быть использована и при решении другого, более сложного задания.

Задание. Докажите, что в параллелепипеде АВС1В1С1D1 плос-ти А1ВD и СB1D1 делят диагональ АС1 на три равных отрезка.

Решение. Обозначим точкой K точку пересечения медиан ∆А1ВD. Тогда по формуле, выведенной в предыдущей задаче, мы получаем, что

Это соотношение означает, что вектора АК и АС1 коллинеарны, поэтому они располагаются на одной прямой (они не могут находиться на параллельных прямых, ведь у них есть общая точка А). Значит, точка K принадлежит диагонали АС1, и отрезок АК втрое короче диагонали.

Аналогично можно показать, что и

Из этого также вытекает, что М принадлежит диагонали АС1, и МС1 втрое короче АС1. Значит, точки М и К делят диагональ на три равных отрезка, ч. т. д.

Сегодня мы расширили понятие векторов и научились их применять не только в планиметрических, но и в стереометрических задачах. При сохраняются все правила, по которым выполняются действия над векторами. Также в стереометрии появляется новое понятие компланарных и некомпланарых векторов.

Уравнения плоскости, компланарной двум неколлинеарным векторам

Напомним, что три или более векторов называются компланарными , если существует плоскость, которой они параллельны. Эту плоскость будем называть компланарной заданным векторам .

Направляющими векторами плоскости называются два неколлинеарных вектора, компланарных этой плоскости, т.е. принадлежащих плоскости или параллельных ей.

Пусть в координатном пространстве заданы:

б) два неколлинеарных вектора (рис.4.15).

Требуется составить уравнение плоскости, компланарной векторам и проходящей через точку

Выберем на плоскости произвольную точку . Обозначим — радиус-векторы точек и (рис.4.16).

Условие компланарности векторов (рис.4.16) можно записать, используя свойства смешанного произведения Применяя формулу (1.17), получаем уравнение плоскости, проходящей через заданную точку и компланарной двум неколлинеарным векторам:

Параметрическое уравнение плоскости

Пусть в координатном пространстве заданы:

Читайте также:
Число сочетаний основные свойства, применение математических формул

б) два неколлинеарных вектора (рис.4.15).

Требуется составить параметрическое уравнение вида (4.10) плоскости, компланарной векторам и проходящей через точку

Выберем на плоскости произвольную точку . Обозначим -радиус-векторы точек и (рис.4.16).

Точка принадлежит заданной плоскости тогда и только тогда, когда векторы и компланарны (см. разд. 1.3.2). Запишем условие компланарности: где — некоторые действительные числа (параметры). Учитывая, что получим векторное параметрическое уравнение плоскости :

где — направляющие векторы плоскости, а — радиус-вектор точки, принадлежащей плоскости.

Координатная форма записи уравнения (4.19) называется параметрическим уравнением плоскости:

где и — координаты направляющих векторов и соответственно. Параметры в уравнениях (4.19),(4.20) имеют следующий геометрический смысл: величины пропорциональны расстоянию от заданной точки до точки принадлежащей плоскости. При точка совпадает с заданной точкой . При возрастании (или ) точка перемещается в направлении вектора (или ), а при убывании (или ) — в противоположном направлении.

1. Поскольку направляющие векторы плоскости неколлинеарны, то они ненулевые.

2. Любой вектор , коллинеарный плоскости, ортогонален нормальному вектору для этой плоскости. Поэтому их скалярное произведение равно нулю:

Следовательно, координаты и направляющих векторов и плоскости и ее нормали связаны однородными уравнениями:

3. Направляющие векторы плоскости определяются неоднозначно.

4. Для перехода от общего уравнения плоскости (4.15) к параметрическому (4.20) нужно выполнить следующие действия:

1) найти любое решение уравнения определяя тем самым координаты точки принадлежащей плоскости;

2) найти любые два линейно независимых решения однородного уравнения определяя тем самым координаты решения и направляющих векторов и плоскости;

3) записать параметрическое уравнение (4.20).

5. Чтобы перейти от параметрического уравнения плоскости к общему , достаточно либо записать уравнение (4.18) и раскрыть определитель, либо найти нормаль как результат векторного произведения направляющих векторов:

и записать общее уравнение плоскости в форме (4.14):

6. Векторное параметрическое уравнение плоскости (4.19), полученное в прямоугольной системе координат, имеет тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнении остается прежним.

Пример 4.8. В координатном пространстве (в прямоугольной системе координат) заданы точки и (см. рис.4.11). Требуется:

а) составить параметрическое уравнение плоскости, перпендикулярной отрезку и проходящей через его середину;

б) составить общее уравнение плоскости, проходящей через середину отрезка и компланарной радиус-векторам и

Решение. а) Общее уравнение искомой плоскости было получено в примере 4.5: Составим параметрическое уравнение:

1) находим любое решение уравнения , например, следовательно, точка принадлежит плоскости;

2) находим два линейно независимых (непропорциональных) решения однородного уравнения например и следовательно, векторы являются направляющими для плоскости;

3) записываем параметрическое уравнение плоскости (4.20):

б) Координаты середины отрезка были найдены в примере 4.5. Нормаль к искомой плоскости получим как векторное произведение ее направляющих векторов и

Составляем уравнение (4.14):

Тот же результат можно получить, записывая уравнение (4.18):

Компланарные векторы. Правило параллелепипеда – КОМПЛАНАРНЫЕ ВЕКТОРЫ – ВЕКТОРЫ В ПРОСТРАНСТВЕ

1) ввести определение компланарных векторов;

2) рассмотреть признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов.

I. Организационный момент

II. Постановка целей и мотивация урока

III. Объяснение нового материала

Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости. Любые два вектора компланарны; три вектора, среди которых два коллинеарные, также компланарны (объясните почему).

Читайте также:
Четырехугольник является параллелограммом - доказательство

На рис. 1 изображен параллелепипед.

Векторы – компланарны, так как, если отложить от точки О вектор, равный то получится вектор а векторы лежат в плоскости ОСЕ. – некомпланарны, так как вектор не лежит в плоскости ОАВ. Признак компланарности 3-х векторов: если вектор можно разложить по векторам то есть представить в виде: (х, у – некоторые числа), то векторы – компланарны.

Доказательство: Пусть не коллинеарные (рис. 2) (если коллинеарные – компланарность очевидна). Отложим отточки О векторы: и лежат в плоскости ОАВ. В плоскости ОАВ лежат и векторы и лежит в той же плоскости. Что и требовалось доказать. Обратное утверждение: если векторы компланарны, а векторы некомпланарны, то вектор можно разложить по векторам то есть причем коэффициенты х и у определяются единственным образом.

Доказательство: (самостоятельно) на основании теоремы о разложении вектора по двум неколлинеарным векторам.

1) – компланарны (по условию).

Если их отложить от точки А, то они будут лежать в одной плоскости.

2) Построим параллелограмм ABCD:

3) коллинеарные аналогично

4) что и требовалось доказать (единственность коэффициентов х, у доказать самостоятельно дома).

Правило параллелепипеда (для сложения трех некомпланарных векторов).

Дано: (рис. 3).

IV. Формирование знаний и умений

Устно – № 355 а) да; б) нет; в) да; г) нет.

Дано: (рис. 4).

1) Доказательство:

2) – компланарны – ?

согласно признаку компланарности, векторы компланарны.

Решение упражнений № 359 a)

V. Подведение итогов

(по вопросам 13, 14, 15, стр. 92)

№ 358, 359 (б); доп. 368, (а, б)

Ответ к д/з № 358

№ 359 б)

№ 368 а) б)

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.

1.5. Компланарные векторы

Определение 8. Векторы называются компланарными, если их можно отложить в одной плоскости.

Свойства компланарных векторов.

1 . Коллинеарные векторы компланарны. Иными словами, во множество всех возможных компланарных между собой векторов вместе с каждым его вектором входят все векторы, коллинеарные с ним. В частности, нулевой вектор содержится в любом таком множестве и вместе с каждым вектором в это множество входит противоположный ему вектор. Отсюда же следует, что множество компланарных векторов замкнуто относительно операции умножения на действительное число.

2 . Сумма двух векторов есть вектор, компланарный с ними. Следовательно, множество компланарных векторов замкнуто относительно операции сложения.

3 . Три вектора компланарны тогда и только тогда, когда хотя бы один из них можно представить в виде линейной комбинации двух других.

Читайте также:
Параллелепипед определение, свойства, виды, формулы расчета площади

Доказательство.  Пусть векторы компланарны. Возможны два случая.

1) Среди данных векторов есть хотя бы одна пара коллинеарных векторов. Пусть иколлинеарны. Тогда, по свойствам коллинеарных векторов, хотя бы один из них можно выразить через другой. Пусть. Тогда, т.е. векторесть линейная комбинация векторови.

2) Данные векторы попарно не коллинеарны. Отложим их от одной точки О. Пусть ,,. Отрезки ОА, ОВ, ОС попарно не параллельны. Проведём СD ОА так, что D  ОВ (прямой ОВ). Тогда получим , т.е. векторесть линейная комбинация векторови.

 Пусть . По свойствам 1 0 и 2 0 следует, что вектор компланарен с векторамии.

4 . Если векторы ине коллинеарны, то любой компланарный с ними вектор можно представить в виде их линейной комбинации.

Теорема 4. Множество всех компланарных векторов есть двумерное векторное пространство над полем действительных чисел. Базисом в нём является любая упорядоченная пара неколлинеарных векторов.

Доказательство следует из предыдущих свойств.

Задача 3. АВСD и AB1C1D1  два произвольных параллелограмма.

Докажите, что векторы ,,параллельны одной плоскости.

Решение. Для решения задачи достаточно показать, что эти векторы компланарны.

;

;

=

= () + () = =. Так как, то эти векторы компланарны .

Теорема 5. Если векторы не компланарные, то любой геометрический вектор можно представить в виде их линейной комбинации.

Доказательство. Пусть векторы не компланарны. Очевидно, никакие два из них не являются коллинеарными. Пусть  любой вектор. Возможны два случая.

1) Вектор компланарен с какой-нибудь парой данных векторов. Пусть компланарен с векторами и . Тогда по свойству 3 0 компланарных векторов .

2) Вектор не компланарен ни с одной парой данных векторов. Отложим все четыре вектора от одной точки О. пусть ,,и(рис. 11). Проведём (DM)  (M  (AOB)) и (MN)  (N  (OA)). Тогда . Ноколлинеарен вектору, поэтому. Аналогично,,. Следовательно,.

Теорема 6. Множество всех геометрических векторов есть трёхмерное векторное пространство над полем действительных чисел. Базисом в нём является любая упорядоченная тройка некомланарных векторов.

Доказательство следует из теоремы 5 и свойств компланарных векторов.

В курсе линейной алгебры (в первом семестре) введены координаты вектора в данном базисе и рассмотрены свойства координат. Все определения и свойства их будут использоваться в векторных пространствах геометрических векторов.

Если в векторном пространстве зафиксированы два базиса В и В 1 , Т – матрица перехода от базиса В к базису В 1 , х и х 1 столбцы координат данного вектора в базисахВ и В 1 соответственно, то х = Тх 1 . Если эти формулы переписать в координатах во множестве компланарных векторов, то получим

где ,.

Во множестве всех геометрических векторов

где ,,

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: