Коллинеарные векторы – определение, свойства, обозначения

Условие коллинеарности векторов

В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.

Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.

Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.

Согласно схемам операций над векторами умножение вектора на некоторое заданное число приводит к соответствующему сжатию или растяжению вектора при сохранении или смене направления. Тогда вектор b → = λ · a → коллинеарен вектору a → , где λ – некоторое действительное число. Справедливым будет и обратное утверждение: если вектор b → коллинеарен вектору a → , его можно представить в виде λ · a → . Это является необходимым и достаточным условием коллинеарности двух ненулевых векторов.

Для коллинеарности двух векторов необходимо и достаточно, чтобы они были связаны равенствами: b → = λ · a → или a → = μ · b → , μ ∈ R

Координатная форма условия коллинеарности векторов

Исходные данные: вектор a → задан в некоторой прямоугольной системе координат на плоскости и имеет координаты ( a x , a y ) , тогда, согласно полученному выше условию, вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y ) .

По аналогии: если вектор a → задан в трехмерном пространстве, то он будет представлен в виде координат a = ( a x , a y , a z ) , а вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y , λ · a z ) . Из полученных утверждений следуют условия коллинеарности двух векторов в координатном толковании.

  1. ​​​Для коллинеарности двух ненулевых векторов на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y или a x = μ · b x a y = μ · b y
  2. Для коллинеарности двух ненулевых векторов в пространстве необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y b z = λ · a z или a x = μ · b x a y = μ · b y a z = μ · b z
Читайте также:
Объем цилиндра определение, формулы расчета через диаметр и площадь

Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.

Если ненулевые векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) коллинеарны, то согласно векторному определению произведения a → × b → = 0 → . И это также соответствует равенству: i → j → k → a x a y a z b x b y b z = 0 → , что, в свою очередь, возможно только тогда, когда заданные векторы связаны соотношениями b → = λ · a → и a → = μ · b → , где μ – произвольное действительное число (на основании теоремы о ранге матрицы), что указывает на факт коллинеарности векторов.

Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

Рассмотрим применение условия коллинеарности на конкретных примерах.

Исходные данные: векторы a → = ( 3 – 2 2 , 1 ) и b → = ( 1 2 + 1 , 2 + 1 ) . Необходимо определить, коллинеарны ли они.

Решение

Выполним задачу, опираясь на условие коллинеарности векторов на плоскости в координатах: b x = λ · a x b y = λ · a y Подставив заданные значения координат, получим: b x = λ · a x ⇔ 1 2 + 1 = λ · ( 3 – 2 2 ) ⇒ λ = 1 ( 2 + 1 ) · ( 3 – 2 2 ) = 1 3 2 – 4 + 3 – 2 2 = 1 2 – 1 b y = λ · a y ⇔ 2 + 1 = 1 2 – 1 · 1 ⇔ ( 2 + 1 ) · ( 2 – 1 ) = 1 ⇔ 1 ≡ 1

Т.е. b → = 1 2 – 1 · a → , следовательно, заданные векторы коллинеарны.

Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 1 , 0 , – 2 ) и b → = ( – 3 , 0 , 6 ) . Необходимо убедиться в их коллинеарности.

Решение

Т.к. b x = λ · a x b y = λ · a y b z = λ · a z ⇔ – 3 = – 3 · 1 0 = – 3 · 0 6 = – 3 · ( – 2 ) , то верным будет равенство: b → = – 3 · a → , что является необходимым и достаточным условием коллинеарности. Таким образом, заданные векторы коллинеарны.

Найдем также векторное произведение заданных векторов и убедимся, что оно равно нулевому вектору: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 1 0 – 2 – 3 0 6 = i → · 0 · 6 + j → · ( – 2 ) · ( – 3 ) + k → · 1 · 0 – k → · 0 · ( – 3 ) – j → · 1 · 6 – i → · ( – 2 ) · 0 = 0 → Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 2 , 7 ) и b → = ( p , 3 ) . Необходимо определить, при каком значении p заданные векторы будут коллинеарны.

Решение

Согласно выведенному выше условию, векторы коллинеарны, если

b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7

Читайте также:
Площадь пирамиды определение, свойства усеченной и правильной фигуры

тогда λ = 3 7 , а p = λ · 2 ⇔ p = 6 7 .

Ответ: при p = 6 7 заданные векторы коллинеарны.

Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.

Исходные данные: вектор a → = ( 2 , – 6 ) . Необходимо найти любой ненулевой вектор, коллинеарный заданному.

Решение

Ответом может послужить, например, 1 2 · a → = ( 1 , – 3 ) или вектор 3 · a → = ( 6 , – 18 ) .

Ответ: вектор, коллинеарный заданному имеет координаты ( 1 , – 3 ) .

Исходные данные: вектор a → = ( 3 , 4 , – 5 ) . Необходимо определить координаты вектора единичной длины, коллинеарного заданному.

Решение

Вычислим длину заданного вектора по его координатам: a → = a x 2 + b x 2 + c x 2 = 3 2 + 4 2 + ( – 5 ) 2 = 5 2 Разделим каждую из заданных координат на полученную длину и получим единичный вектор, коллинеарный данному: 1 a → · a → = ( 3 5 2 , 4 5 2 , – 1 2 )

Вектор. Определение и основные понятия

Вектор – это направленный отрезок, то есть отрезок, имеющий длину и определенное направление. Графически вектора изображаются в виде направленных отрезков прямой определенной длины.

Обозначение вектора

Вектор началом которого есть точка ( A ) , а концом – точка ( B ) , обозначается ( vec ) . Также вектора обозначают одной маленькой буквой, например ( vec )

Направление вектора (от начала к концу) на рисунках отмечается стрелкой.

Длина вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа ( left| vec right| ) .

Длина направленного отрезка определяет числовое значение вектора и называется длиной вектора или модулем вектора ( left| vec right| ) .

Нулевой вектор

Нулевой вектор обычно обозначается как ( vec <0>) .

Длина нулевого вектора равна нулю.

Любая точка пространства также может рассматриваться как вектор. Такой вектор называется нулевым. Начало и конец нулевого вектора совпадают, и он не имеет какого-либо определенного направления.

Нулевым вектором называется вектор, у которого начальная и конечная точка совпадают.

Длина вектора на плоскости

Длина вектора в трехмерном пространстве

Длина вектора в n-мерном пространстве

Коллинеарные вектора

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами

Сонаправленные вектора

Противоположно направленные вектора

Компланарные вектора

Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами.

Читайте также:
Правило Лопиталя для вычисления пределов, примеры с подробным решением

Равные вектора

То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

  • Математика
  • Информатика
  • Финансы
  • Жизнь
  • Здоровье
  • Работа с текстом
  • Работа с цветом
  • Конвертеры
  • Графики
  • Алгебра
  • Геометрия
  • Тригонометрия
  • Физика
  • Химия
  • Литература
  • Информатика
  • Астрономия
  • Законы
  • Единицы измерений
  • Таблицы
  • Инструкции
  • Знаменитые химики
  • Знаменитые физики
  • Знаменитые математики
  • Знаменитые биологи
  • Знаменитые психологи
  • Знаменитые философы
  • ЕГЭ
  • Гаджеты
  • Разное
О сайте

На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.

Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.

calcsbox.com

На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.

  • Пользовательское соглашение
  • Cookie
  • О сайте

© 2021 Все калькуляторы online

Копирование материалов запрещено

Вектор. Виды векторов.

Вектор — в самом элементарном случае это математический объект, который характеризуется

величиной и направлением.

В геометрии вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая

из его граничных точек является началом, а какая — концом.

У вектора есть длина и определенное направление. Графически вектора изображаются как

направленные отрезки прямой конкретной длины. Длина вектора – это и есть длина этого отрезка.

Для обозначения длины вектора используются две вертикальные линии по обоим сторонам: |AB|.

Как видно на рисунке, начало отрезка – это точка А, концом отрезка является

точка В, а непосредственно вектор обозначен через . У направления

вектора существенное значение, если переместить стрелку на другую

сторону отрезка, то получим вектор, но абсолютно другой. Понятие вектора

удобно сравнивать с движением физического тела: подумайте, ехать на

рыбалку и с рыбалки – разница огромная.

Понятия «больше» и «меньше» для векторов не имеет значения — так как направления их могут быть

разными. Сравнивают лишь длины векторов. Зато есть понятие равенства для векторов.

Читайте также:
Теорема Пифагора - доказательство, решения задач

Виды векторов.

Единичным называется вектор, длина которого равна 1.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором.

У такого вектора конец и начало совпадают.

Нулевой вектор обычно обозначается как . Длина нулевого вектора, или его модуль равен нулю.

Коллинеарные вектора – вектора, которые параллельны одной прямой

или которые лежат на одной прямой.

Сонаправленные вектора. Два коллинеарных вектора a и b называются

сонаправленными векторами только тогда, когда их направления

соответствуют друг другу: a↑↑b

Противоположно направленные вектора – два коллинеарных вектора

a и b называются противоположно направленными векторами, только

когда они направлены в разные стороны: a↑↓b.

Компланарные вектора – это те вектора, которые параллельны одной

плоскости или те, которые лежат на общей плоскости.

В любое мгновение существует плоскость одновременно параллельную

двум любым векторам, поэтому два произвольных вектора являются

Равные вектора. Вектора a и b будут равными, если они будут лежать на

одной либо параллельных прямых и их направления и длины одинаковые.

То есть, такой вектор можно перенести параллельно ему в каждое место

Таким образом, два вектора равны, если они коллинеарные, сонаправленые

и имеют одинаковые длины:

Для координатного представления векторов огромное значение

оказывает понятие проекции вектора на ось (направленную

прямую).

Проекция вектора – это длина отрезка, который образуется

проекциями точек начала и конца вектора на заданную прямую,

при этом проекции добавляется знак “+”, но когда направление

проекции соответственно направлению оси, иначе — знак “–”.

Проекция – это длина заданного вектора, умноженная на cos угла исходного вектора и оси; проекция

вектора на ось, которая перпендикулярна ему = 0.

Когда работают с векторами, зачастую вводят так называемую

декартову систему координат и уже в этой системе находят

координаты вектора по базисным векторам.

Разложение по базису геометрически можно показать проекцией

вектора на координатные оси. Когда известны координаты начала и

конца вектора, то координаты данного вектора получают вычитая

из координат конца вектора координат начала вектора.

За базис зачастую выбираются координатные орты, которые обозначаются как , соответственно

Читайте также:
Монотонность функции как определить убывающую и возрастающую

осям x, y, z. Исходя из этого, вектор можно записать в таком виде:

Каждое геометрическое свойство есть возможность записать в координатах, и далее исследование

из геометрического переходит в алгебраическое и на этом этапе в основном упрощается. Обратное,

кстати, неверно: не у любого соотношения в координатах есть геометрическое толкование, но только

те соотношения, которые выполняются в любой декартовой системе координат (инвариантные).

Коллинеарные векторы

Какие векторы называются коллинеарными?

Какими свойствами обладают коллинеарные векторы?

Векторы называются коллинеарными, если они лежат на одной прямой либо на параллельных прямых.

Например, все векторы

коллинеарны между собой.

Нулевой вектор считают коллинеарным любому вектору.

Коллинеарные векторы делятся на сонаправленные и противоположно направленные.

Векторы

называются сонаправленными (или одинаково направленными), если лучи AB и CD сонаправлены.

(Сонаправленность векторов записывают с помощью знака ↑↑).

Векторы

называются противоположно направленными, если лучи AB и CD противоположно направлены.

(Противоположное направление векторов обозначают знаком ↑↓).

(Свойство коллинеарных векторов)

У коллинеарных векторов соответствующие координаты пропорциональны

То есть если векторы

(Признак коллинеарных векторов)

Если соответствующие координаты векторов пропорциональны, то эти векторы коллинеарны.

при λ>0 векторы сонаправлены

при λ

неколлинеарны, то любой вектор

можно разложить как

где m и n — некоторые числа.

Такое разложение единственно.

Понятие о векторе

Вектор (векторная величина) – всякая величина, обладающая направлением.

Скаляр (скалярная величина) – величина, не обладающая направлением.

Сила , действующая на материальную точку, есть вектор, так как обладает направлением. Например скорость, ускорение, перемещение .

А вот например температура есть скаляр, так как не связано c направлением. Масса, плотность, объём, площадь, время это тоже скаляр.

В аналитической геометрии направленный отрезок называется вектором.

Расстояние между началом и концом вектора называется длиной или модулем вектора. Модуль есть скалярная величина.

О единичном векторе см. здесь

Обозначение вектора

Вектор, началом которого служит A, а концом – B, обозначается , $overrightarrow $ также обозначается одной буквой (эту букву печатают жирным шрифтом a, а на письме ставят черту $left| right|$).

Модуль вектора обозначается двумя вертикальными чертами слева и справа:

Читайте также:
Выделение полного квадрата многочлена формулы выделения квадратов

$overrightarrow $, или |a| , или $left| right|$

Нуль-вектор

Если начало A и конец B отрезка AB совпадают, то отрезок AB обращается в точку и теряет направление. Этот вектор называется нуль-вектором и считается коллинеарным и сонаправленным с любым вектором. Обозначается, как число нуль (знак 0).

Любая точка пространства может рассматриваться как нуль-вектор.

Коллинеарные векторы

Коллинеарные векторы – это векторы, лежащие на параллельных прямых.

Неколлинеарные векторы – это векторы, не лежащие на параллельных прямых.

Другим словами параллельные вектора называются коллинеарными.

Векторы a, c, d – коллинеарны.

Векторы a и d – векторы имеющие одинаковое направление и их называют или сонаправленными или равнонаправленными векторами, а векторы a и c и векторы с и d называют противоположно направленными.

Компланарные векторы

Компланарными векторами называют три вектора, которые лежат в одной плоскости или параллельны одной плоскости.

На этом рисунке векторы a,b,c являются компланарными

На рисунке векторы m,n,p — некомпланарны

Смешанное произведение трех компланарных векторов равно 0, т.е.

(a, b, c) = 0

Пример смешанного произведения трех компланарных векторов смотрите здесь

Равенство векторов

Два вектора a и b равны, если они равнонаправленные и имеют один и тот же модуль (длину).

На рисунке векторы a и b равны.

Векторы c и d не равны (даже если длины одинаковы), так как направления различны, следовательно и векторы c и a тоже не равны.

Векторы d и a равны.

Сонаправленные векторы

Сонаправленные векторы — это коллинеарные вектора, направленные в одну сторону, т.е. совпадают направления.

Обозначение: a↑↑b

Противоположные векторы

Два коллинеарных (параллельных) вектора, имеющие равные модули и противоположно направленные, т.е. друг другу называются противоположными векторами.

Вектор, противоположный вектору a, обозначается как a.

Обозначение: a↑↓b

Векторы a и a противоположные.

Как найти вектор, коллинеарный вектору

Вы будете перенаправлены на Автор24

Понятие коллинеарности векторов

Чтобы понять, что значит коллинеарные векторы, сперва надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.

Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.

Концами отрезка будем называть точки, которые его ограничивают.

Для введения определения вектора один из концов отрезка назовем его началом.

Читайте также:
Подобные треугольники признаки подобия, свойства, теоремы об отношении площадей

Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.

Обозначение: $overline$ – вектор $AB$, имеющий начало в точке $A$, а конец в точке $B$.

Иначе одной маленькой буквой: $overline$ (рис. 1).

Рисунок 1. Обозначение векторов. Автор24 — интернет-биржа студенческих работ

Нулевым вектором будем называть любую точку, которая принадлежит плоскости.

Далее рассмотрим, какие векторы называются коллинеарными.

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой. Кроме того, понятие коллинеарность наблюдается в случается параллельности векторов (рис.2).

Готовые работы на аналогичную тему

Рисунок 2. Коллинеарность векторов. Автор24 — интернет-биржа студенческих работ

Также введем определение векторного произведения, которое будет нам необходимо далее.

Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют ту же ориентацию, как и декартова система координат.

Чтобы найти векторное произведение, будем пользоваться формулой

$overline<α>хoverline<β>=beginoverline&overline&overline\α_1&α_2&α_3\β_1&β_2&β_3end$

Признак коллинеарности через пропорциональность или как определить коллинеарность векторов по координатам

Главное условие коллинеарности векторов: чтобы ненулевые векторы были коллинеарны между собой, необходимо, чтобы их соответствующие координаты были пропорциональны друг другу.

Доказательство.

Необходимость: Пусть нам даны векторы $overline<α>$ и $overline<β>$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать следующие равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Так как векторы $overline<α>$ и $overline<β>$ коллинеарны, то они будут либо сонаправленными, либо противоположно направленными. Без ограничения общности, будем считать, что они будут сонаправлены, то есть $overline<α>↑↑overline<β>$. Умножим один из этих векторов на действительное, большее нуля, число $r$, так, чтобы длины векторов $roverline<α>$ и $overline<β>$ были равны между собой. По определению умножения векторов на число, получим, что $roverline<α>↑↑overline<β>$. Но тогда, по определению равенства векторов, получим, что $roverline<α>=overline<β>$. Из этого равенства получим, что

Читайте также:
Сборник ГДЗ по математике для 5 класса по Виленкину читать

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Достаточность: Пусть верны равенства $α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$. Докажем, что векторы $overline<α>$ и $overline<β>$ будут коллинеарными.

Из данных равенств следует, что $roverline<α>=overline<β>$.

Имеются два случая:

В этом случае, по определению умножения вектора на число, получим, что $roverline<α>↑↓overline<β>$.

В этом случае получим, что $roverline<α>↑↑overline<β>$.

Тогда, в обоих случаях получаем доказательство коллинеарности векторов $overline<α>$ и $overline<β>$.

Ответ: теорема доказана.

Как проверить коллинеарность векторов $(3,-1)$ и $(9,-3)$.

Доказательство.

Разложим второй вектор:

Получаем, что координаты этих векторов пропорциональны друг другу, что, по теореме 1, и доказывает наше утверждение.

Признаки и свойства коллинеарности векторов через их произведение

Чтобы ненулевые векторы были коллинеарны между собой, необходимо и достаточно, чтобы их векторное произведение было равно нулевому вектору.

Доказательство.

Необходимость: Пусть нам даны векторы $overline<α>$ и $overline<β>$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они коллинеарны друг другу. Тогда нам нужно доказать, что $overline<α>хoverline<β>=overline<0>$.

Так как векторы коллинеарны, то, по теореме 1, верны равенства

$α_1=rβ_1$, $α_2=rβ_2$, $α_3=rβ_3$

Найдем $overline<α>хoverline<β>$ по формуле

$overline<α>хoverline<β>=beginoverline&overline&overline\α_1&α_2&α_3\β_1&β_2&β_3end=beginoverline&overline&overline\rβ_1&rβ_2&rβ_3\β_1&β_2&β_3end=rbeginoverline&overline&overline\β_1&β_2&β_3\β_1&β_2&β_3end=rcdot overline<0>=overline<0>$

Достаточность: Пусть верно равенство $overline<α>хoverline<β>=overline<0>$, докажем, что векторы $overline<α>$ и $overline<β>$ коллинеарны. Так как векторное произведение равняется $overline<0>$, то его длина также равняется нулю. Следовательно, угол между $overline<α>$ и $overline<β>$ равняется $180^circ$ или $0^circ$. То есть, чтобы они были коллинеарны, векторы должны лежать на одной или параллельных прямых.

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №4. Свойства и график функции .

Перечень вопросов, рассматриваемых в теме

  • Изучение свойств графика функции ;
  • Определение промежутков монотонности, наибольшего и наименьшего значения, нулей функции ;
  • Определение свойств и положение графика тригонометрических функций вида и
  • Построение графика функции
  • Объяснять зависимость свойств и положения графика функции вида иот значения коэффициентов а, k, b;
  • Демонстрирование уверенного владения свойствами функции .

Глоссарий по теме

Читайте также:
Правильный треугольник определение, основные свойства и признаки

Синусоидой называется множество точек плоскости, которое в некоторой системе координат является графиком функции , где a≠0.

Число │a│ называется амплитудой.

Основная литература:

Колягин М.В. Ткачева Ю.М., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. М.: Просвещение, 2010.–336 с.

Дополнительная литература:

Шахмейстер, А.Х. Тригонометрия / А.Х. Шахмейстер.— СПб.: Петроглиф, 2014. — 750 с.

Открытые электронные ресурсы:

Открытый банк заданий ЕГЭ ФИПИ [Электронный ресурс].– Режим доступа: http://ege.fipi.ru/

Решу ЕГЭ образовательный портал для подготовки к экзаменам [Электронный ресурс]. – Режим доступа: https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

На прошлом уроке мы говорили о свойствах графика косинуса:

1) область определения функции – множество R всех действительных чисел;

2) Множество значений функции – отрезок [–1;1];

3) Функция косинуса периодическая, ;

4) Функция чётная;

5) Функция принимает:

  • значение, равное 0, при ;
  • наименьшее значение, равное –1, при

;

  • наибольшее значение, равное 1, при ;

6) Функция

  • возрастает на отрезке и на отрезках, получаемых сдвигами этого интервала на .

Давайте сравним их со свойствами графика синуса, а для начала определим следующие моменты:

  • При движении точки до первой четверти ордината увеличивается;
  • При движении точки по второй четверти ордината постепенно уменьшается;
  • Функция возрастает на отрезке и убывает на отрезке .

Свойства функции :

3) Период функции равен ;

4) Функция чётная/нечётная;

5) Функция принимает:

  • значение, равное 0, при ;
  • наименьшее значение, равное –1, при ;
  • наибольшее значение, равное 1, при ;
  • положительные значения на интервале (0;) и на интервалах, получаемых сдвигами этого интервала на ;
  • отрицательные значения на интервале и на интервалах, получаемых сдвигами этого интервала на .

6) Функция

  • возрастает на отрезке и на отрезках, получаемых сдвигами этого отрезка на ;
  • убывает на отрезке и на отрезках, получаемых сдвигами этого отрезка на .

Изменяя амплитуду и значение аргумента функции синуса график ведет себя следующим образом (рис.1)

Рис. 1 – графики синуса

Сдвиг графика влево/вправо вдоль оси абсцисс

Если к аргументу функции добавляется постоянная, то происходит сдвиг (параллельный перенос) графика вдоль оси Ох.

Читайте также:
Формулы площадей всех фигур

Правило:
1) чтобы построить график функции , нужно сдвинуть график вдоль оси Ох на b единиц влево;

2) чтобы построить график функции , нужно график сдвинуть вдоль оси ОХ на b единиц вправо.

Теоретический материал для самостоятельного изучения

1. На следующие утверждения нужно ответить верно/неверно.

1) Тригонометрическая функция определена на всей числовой прямой.

2) График нечетной функции можно построить с помощью преобразования симметрии относительно оси Оу.

3) График тригонометрической функции можно построить, используя одну главную полуволну.

Ответ: верно, неверно, верно.

2. Вспомним, что мы уже знаем о функции , ответив на вопросы:

1) Какие значения может принимать переменная х. Какова область определения этой функции?

2) В каком промежутке заключены значения выражения . Назови наибольшее и наименьшее значения функции .

3) Функция синуса чётная или нечётная?

Примеры и разборы решения заданий тренировочного модуля:

Пример 1. Найдем все корни уравнения , принадлежащие отрезку .

Построим графики функций и (рис. 6)

Рис. 7 – графики функций и .

Графики пересекаются в четырёх точках, абсциссы которых являются корнями уравнения . На выбранном отрезке от корни уравнения симметричны: и . Из рисунка видно, что симметричность корней объясняется периодичностью функции: аналогично для

Ответ: ; .

Пример 2.Найти все решения неравенства , принадлежащие отрезку .

Из рисунка 7 видно, что график функции лежит выше графика функции на промежутках и и

Ответ: , ,

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: