Измерение количества информации – методы и единицы измерения читать онлайн

Информатика. 7 класс

Конспект урока

Информатика

Единицы измерения информации

Перечень вопросов, рассматриваемых в теме:

  • Алфавитный подход к измерению информации.
  • Наименьшая единица измерения информации.
  • Информационный вес одного символа алфавита и информационный объём всего сообщения.
  • Единицы измерения информации.
  • Задачи по теме урока.

Каждый символ информационного сообщения несёт фиксированное количество информации.

Единицей измерения количества информации является бит – это наименьшаяединица.

1 Кб (килобайт) = 1024 байта= 2 10 байтов

1 Мб (мегабайт) = 1024 Кб = 2 10 Кб

1 Гб (гигабайт) = 1024 Мб = 2 10 Мб

1 Тб (терабайт) =1024 Гб = 2 10 Гб

Формулы, которые используются при решении типовых задач:

Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .

Информационный объём сообщения определяется по формуле:

I – объём информации в сообщении;

К – количество символов в сообщении;

i – информационный вес одного символа.

Основная литература:

  1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.

Дополнительная литература:

  1. Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
  2. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  4. Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.

Теоретический материал для самостоятельного изучения.

Любое сообщение несёт некоторое количество информации. Как же его измерить?

Одним из способов измерения информации является алфавитный подход, который говорит о том, что каждый символ любого сообщения имеет определённый информационный вес, то есть несёт фиксированное количество информации.

Сегодня на уроке мы узнаем, чему равен информационный вес одного символа и научимся определять информационный объём сообщения.

Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.

Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.

Алфавит любого понятного нам языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита связана с разрядностью двоичного кода соотношением: N = 2 i .

Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.

Рассмотрим пример:

Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.

Составим краткую запись условия задачи и решим её:

16 = 2 i , 2 4 = 2 i , т. е. i = 4

Ответ: i = 4 бита.

Информационный вес одного символа этого алфавита составляет 4 бита.

Сообщение состоит из множества символов, каждый из которых имеет свой информационный вес. Поэтому, чтобы вычислить объём информации всего сообщения, нужно количество символов, имеющихся в сообщении, умножить на информационный вес одного символа.

Математически это произведение записывается так: I = К · i.

Например: сообщение, записанное буквами 32-символьного алфавита, содержит 180 символов. Какое количество информации оно несёт?

32 = 2 i , 2 5 = 2 i , т.о. i = 5,

I = 180 · 5 = 900 бит.

Ответ: I = 900 бит.

Итак, информационный вес всего сообщения равен 900 бит.

В алфавитном подходе не учитывается содержание самого сообщения. Чтобы вычислить объём содержания в сообщении, нужно знать количество символов в сообщении, информационный вес одного символа и мощность алфавита. То есть, чтобы определить информационный вес сообщения: «сегодня хорошая погода», нужно сосчитать количество символов в этом сообщении и умножить это число на восемь.

I = 23 · 8 = 184 бита.

Значит, сообщение весит 184 бита.

Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.

Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.

1 Кб (килобайт) = 1024 байта= 2 10 байтов

1 Мб (мегабайт) = 1024 Кб = 2 10 Кб

1 Гб (гигабайт) = 1024 Мб = 2 10 Мб

1 Тб (терабайт) =1024 Гб = 2 10 Гб

Итак, сегодня мы узнали, что собой представляет алфавитный подход к измерению информации, выяснили, в каких единицах измеряется информация и научились определять информационный вес одного символа и информационный объём сообщения.

Читайте также:
Шестнадцатеричный код - расшифровка, преобразования

Материал для углубленного изучения темы.

Как текстовая информация выглядит в памяти компьютера.

Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.

Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.

В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.

Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:

01100110 01101001 01101100 01100101.

А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:

01100100 01101001 01110011 01101011?

В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.

Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.

Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.

Сейчас используют целых пять систем кодировок русского алфавита (КОИ8-Р, Windows, MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид. Поэтому, всегда нужно уточнять, какая система кодирования установлена на компьютере.

Разбор решения заданий тренировочного модуля

№1. Определите информационный вес символа в сообщении, если мощность алфавита равна 32?

Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .

32 = 2 i , 32 – это 2 5 , следовательно, i =5 битов.

Ответ: 5 битов.

№2. Выразите в килобайтах 2 16 байтов.

2 16 можно представить как 2 6 · 2 10 .

2 6 = 64, а 2 10 байт – это 1 Кб. Значит, 64 · 1 = 64 Кб.

Ответ: 64 Кб.

№3. Тип задания: выделение цветом

8 х = 32 Кб, найдите х.

8 можно представить как 2 3 . А 32 Кб переведём в биты.

Измерение количества информации – методы и единицы измерения читать онлайн

Для информации существуют свои единицы измерения информации. Если рассматривать сообщения информации как последовательность знаков, то их можно представлять битами, а измерять в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах и петабайтах.

Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.

Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.

Байт – основная единица измерения количества информации.

Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.

Производные единицы измерения количества информации

1 килобайт (Кб)=1024 байта =2 10 байтов

1 мегабайт (Мб)=1024 килобайта =2 10 килобайтов=2 20 байтов

1 гигабайт (Гб)=1024 мегабайта =2 10 мегабайтов=2 30 байтов

1 терабайт (Гб)=1024 гигабайта =2 10 гигабайтов=2 40 байтов

Запомните, приставка КИЛО в информатике – это не 1000, а 1024, то есть 2 10 .

Методы измерения количества информации

Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Алфавитный подход к измерению количества информации

При этом подходе отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка, т.е. его алфавит можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет в себе каждый символ:

Читайте также:
Как включить ПК - различные способы и последовательность действий читать онлайн

Вероятностный подход к измерению количества информации

Этот подход применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

I – количество информации,

N – количество возможных событий,

Pi – вероятность i-го события.

Задача 1.

Шар находится в одной из четырех коробок. Сколько бит информации несет сообщение о том, в какой именно коробке находится шар.

Имеется 4 равновероятных события (N=4).

По формуле Хартли имеем: 4=2 i . Так как 2 2 =2 i , то i=2. Значит, это сообщение содержит 2 бита информации.

Задача 2.

Чему равен информационный объем одного символа русского языка?

В русском языке 32 буквы (буква ё обычно не используется), то есть количество событий будет равно 32. Найдем информационный объем одного символа. I=log2 N=log2 32=5 битов (2 5 =32).

Примечание. Если невозможно найти целую степень числа, то округление производится в большую сторону.

Задача 3.

Чему равен информационный объем одного символа английского языка?

Задача 4.

Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний (“включено” или “выключено”). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

С помощью N лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 N сигналов.

2 5 6 , поэтому пяти лампочек недостаточно, а шести хватит. Значит, нужно 6 лампочек.

Задача 5.

Метеостанция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

В данном случае алфавитом является множество чисел от 0 до 100, всего 101 значение. Поэтому информационный объем результатов одного измерения I=log2101. Но это значение не будет целочисленным, поэтому заменим число 101 ближайшей к нему степенью двойки, большей, чем 101. это число 128=2 7 . Принимаем для одного измерения I=log2128=7 битов. Для 80 измерений общий информационный объем равен 80*7 = 560 битов = 70 байтов.

Задача 6.

Определите количество информации, которое будет получено после подбрасывания несимметричной 4-гранной пирамидки, если делают один бросок.

Пусть при бросании 4-гранной несимметричной пирамидки вероятности отдельных событий будут равны: p1=1/2, p2=1/4, p3=1/8, p4=1/8.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

I = -[1/2 * log2(1/2) + 1/4 * log2(1/4) + 1/8 * log(1/8) + 1/8 * log(1/8)] = 14/8 битов = 1,75 бита.

Задача 7.

В книге 100 страниц; на каждой странице – 20 строк, в каждой строке – 50 символов. Определите объем информации, содержащийся в книге.

Задача 8.

Оцените информационный объем следующего предложения:

Тяжело в ученье – легко в бою!

Так как каждый символ кодируется одним байтом, нам только нужно подсчитать количество символов, но при этом не забываем считать знаки препинания и пробелы. Всего получаем 30 символов. А это означает, что информационный объем данного сообщения составляет 30 байтов или 30 * 8 = 240 битов.

Измерение информации

Средняя оценка: 4.4

Всего получено оценок: 397.

Средняя оценка: 4.4

Всего получено оценок: 397.

Как и любую другую физическую величину, информацию можно измерить. Существуют разные подходы к измерению информации. Один из таких подходов рассматривается в курсе информатики за 7 класс.

Что такое измерение информации

При измерении информации следует учитывать как объем передаваемого сообщения, так и его смысловую нагрузку. В связи с этим в информатике существуют разные подходы к измерению информации.

Алфавитный подход к измерению информации

Способы оценки величины информации могут учитывать или не учитывать смысла информационного сообщения.

Один из способов нахождения количества информации основан на определении веса каждого символа в тексте сообщения. При таком подходе объем сообщения зависит от количества знаков в тексте, чем больше тест, тем больше весит информационное сообщение. При этом абсолютно не важно, что написано, какой смысл несет сообщение. Так как определение объема информации привязано к текстовым единицам: буквам, цифрам, знакам препинания, то такой подход к измерению информации получил название алфавитного.

Вес отдельного знака зависит от их количества в алфавите. Число символов алфавита называют мощностью (N). Например, мощность алфавита английского языка по числу символов равно 26, русского языка 33. Но на самом деле, при написании текста используются и прописные и строчные буквы, а также знаки препинания, пробелы и специальные невидимые символы, обозначающие конец абзаца и перевод к новой строке. Поэтому имеют дело с мощностью 128 или в расширенной версии 256 символов.

Читайте также:
Математические основы информатики системы счисления, объекты

Бит, байт и другие единицы измерения

Для двоичного алфавита, состоящего из двух символов – нуля и единицы, мощность алфавита будет составлять 2. Вес символа бинарного алфавита выбран в качестве минимальной единицы информации и называется «бит». Происхождение термина «бит» исходит от англоязычного слова «binary», что означает двоичный.

Восемь бит образуют байт.

Название «байт» было придумано в 1956 году В. Бухгольцем при проектировании первого суперкомпьютера. Слово «byte» было получено путем замены второй буквы в созвучном слове «bite», чтобы избежать путаницы с уже имеющимся термином «bit».

На практике величина объема информации выражает в более крупных единицах: килобайтах, терабайтах, мегабайтах.

Следует запомнить, что килобайт равен 1024 байта, а не 1000. Как, например, 1 километр равен 1000 метрам. Эта разница получается за счет того, 1 байт равен 8 битам, а не 10.

Для того, чтобы легче запомнить единицы измерения, следует воспользоваться таблицей степени двойки.

Таблица степеней двойки

Показатель степени

Значение

То есть, 2 3 = 8 – это 1 байт, состоящий из 8 бит, 2 10 = 1024 это 1 килобайт, 2 20 = 1048576 представляет собой 1 мегабайт, 2 30 = 1 гигабайт, 2 40 = 1 терабайт.

Определение количества информации

Вес символа (i) и мощность алфавита (N) связаны между собой соотношением: 2 i = N.

Так, алфавит мощностью в 256 символов имеет вес каждого символа в 8 бит, то есть один байт. Это означает, что на каждую букву приходится по байту. В таком случае, нетрудно определить, сколько весит весь кодируемый текст сообщения. Для этого достаточно вес символа алфавита умножить на количество символов в тексте. При подсчете количества символов в сообщении следует не забывать, что знаки препинания, а также пробелы – это тоже символы и они весят столько же, сколько и буквы.

Например, при условии, что каждая буква кодируется одним байтом, для текста, «Ура! Наступили каникулы.» информационный объем определяется умножением 8 битов на 24 символа (без учета кавычек). Произведение 8 * 24 = 192 бита – столько весит кодируемая фраза. В переводе на байты: 192 бита разделить на 8 получим 24 байта.

Эта схема работает и в обратной задаче. Пусть информационное сообщение составляет 2 килобайта и состоит из 512 символов. Необходимо определить мощность алфавита, используемого для кодирования сообщения.

Решение: Сначала целесообразно 2 килобайта перевести в биты: 2 * 1024 = 2048 (бит). Затем объем информационного сообщения делят на количество символов: 2048 / 512 = 4 (бит), получают вес одного символа. Для определения мощности алфавита 2 возводят в степень 4 и получают 16 – это мощность алфавита, то есть количество символов, используемых для кодирования текста.

Что мы узнали?

Одним из способов определения величины информационного сообщения является алфавитный подход, в котором любой знак в тексте имеет некоторый вес, обусловленный мощностью алфавита. Минимальной единицей измерения информации является бит. Информацию можно также измерять в байтах, килобайтах, мегабайтах.

Измерение количества информации – методы и единицы измерения читать онлайн

Информация является одним из фундаментальных понятий современной науки наряду с такими понятиями, как «вещество» и «энергия».

Общее определение этому термину дать невозможно. Однако в раз-личных предметных областях даётся специализированное определение информации, подходящее для данной предметной области. В рамках этого задания мы будем говорить о математической теории информации и рассмотрим два подхода – содержательный (Клод Шеннон) и алфавитный (А.Н.Колмогоров). Начнём с определения понятия «инфор-мация» в каждом из этих подходов.

В содержательном подходе, информация – это снятая неопределённость. Неопределённость некоторого события – это количество возможных результатов (исходов) данного события.

Например, если мы подбрасываем вверх монету, то она может упасть двумя различными способами (орлом вверх или решкой вверх). Соответственно, у данного события два возможных исхода. Если же подбрасывать игральный кубик, то исходов будет шесть.

В алфавитном подходе информация – это сообщение (последовательность символов некоторого алфавита). Причём существенными являются только размер алфавита и количество символов в сообщении. Конкретное содержание сообщения интереса не представляет. Чаще всего алфавит является двоичным (состоит из `2` символов – «`0`» и «`1`»).

Читайте также:
Javascript обучение языку программирования для начинающих с нуля

После таких определений понятия «информация» можно говорить об её измерении. Введём несколько основных единиц измерения информации.

Чаще всего в качестве основной единицы измерения информации используется бит. При алфавитном подходе один бит – это количество информации, которое можно передать в сообщении, состоящем из одного двоичного знака (`«0»` или `«1»`). С точки же зрения содержательного подхода один бит – это количество информации, уменьшающее неопределённость знания в два раза.

Наряду с битами можно использовать и другие единицы измерения информации, например, триты или диты. При алфавитном подходе один трит – это количество информации, которое можно передать в сообщении, состоящем из одного троичного знака `(«0»`, `«1»` или `«2»)`. С точки же зрения содержательного подхода один трит – это количество информации, уменьшающее неопределённость знания в три раза. Соответственно, один дит – это количество информации, уменьшаю-щее неопределённость знания в десять раз, и количество информации, которое можно передать в сообщении, состоящем из одного десятичного знака (арабской цифры). В некоторых задачах (например, в задаче взлома кодового замка) удобнее в качестве основной единицы измерения информации использовать не биты, а диты, поскольку угадывание каждой цифры из кода уменьшает количество комбинаций в `10` раз.

Для каждой основной единицы измерения информации существуют производные более крупные единицы измерения. Поскольку чаще всего мы будем использовать в качестве основной единицы бит, рассмотрим производны е единиц ы измерения для бита. На практике чаще всего используется не бит, а байт.

`1` байт (`1`B) `= 8` бит;

Далее существует две линейки производных единиц для байта – линейка десятичных приставок и линейка двоичных приставок. В случае десятичных приставок каждая следующая единица измерения равна `1000` предыдущих единиц. Обозначаются десятичные приставки латинскими буквами (буква префикса из системы СИ и заглавная «B», обозначающая «байт») Итак:

`1` килобайт (`1` kB) `= 1000` B (1000 байт);

`1` мегабайт (`1` MB) `= 1000` kB ;

`1` гигабайт (`1` GB) `= 1000` MB;

`1` терабайт (`1` TB) `= 1000` GB;

`1` петабайт (`1` PB) `= 1000` TB;

`1` эксабайт (`1` EB) `= 1000` PB;

`1` зеттабайт (`1` ZB) `= 1000` EB;

`1` йоттабайт(`1` YB) `= 1000` ZB.

Более крупных единиц на настоящий момент не введено.

При использовании двоичных приставок, каждая следующая едини-ца измерения равна 1024 предыдущих единиц. В России принято обозначать двоичные приставки, записывая префикс заглавной русской буквой и после него слово «байт» целиком и тоже русскими буквами. За рубежом для обозначения двоичных приставок между префиксом и «B» добавляется маленькая буква «i» (от слова «binary»). Кроме того, все префиксы записываются заглавными буквами. Итак:

`1` кибибайт (`1` Кбайт, `1` KiB) `=2^10` байт `= 1024` байт;

`1` мебибайт (`1` Мбайт, `1` MiB) `=2^20` байт `= 1024` Кбайт;

1 гибибайт (`1` Гбайт, `1` GiB) `=2^30` байт `= 1024` Мбайт;

1 тебибайт (`1` Тбайт, `1` TiB) `=2^40` байт `= 1024` Гбайт;

1 пебибайт (`1` Пбайт, `1` PiB) `=2^50` байт `= 1024` Тбайт;

1 эксбибайт (`1` Эбайт, `1`EiB) `=2^60` байт `= 1024` Пбайт;

1 зебибайт (`1` Збайт, `1` ZiB) `=2^70` байт `= 1024` Эбайт;

1 йобибайт (`1` Йбайт, `1` YiB) `=2^80` байт `= 1024` Збайт.

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 1.6. Измерение информации

Информатика. 7 класса. Босова Л.Л. Оглавление

  • бит
  • информационный вес символа
  • информационный объём сообщения
  • единицы измерения информации
1.6.1. Алфавитный подход к измерению информации

Одно и то же сообщение может нести много информации для одного человека и не нести её совсем для другого человека. При таком подходе количество информации определить однозначно затруднительно.

Алфавитный подход позволяет измерить информационный объём сообщения, представленного на некотором языке (естественном или формальном), независимо от его содержания.

Для количественного выражения любой величины необходима, прежде всего, единица измерения. Измерение осуществляется путём сопоставления измеряемой величины с единицей измерения. Сколько раз единица измерения «укладывается» в измеряемой величине, таков и результат измерения.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет определённый информационный вес — несёт фиксированное количество информации. Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит.

Читайте также:
Расширение файла - что это, какие бывают, как найти, настроить

Обратите внимание, что название единицы измерения информации «бит» (bit) происходит от английского словосочетания binary digit — «двоичная цифра».

За минимальную единицу измерения информации принят 1 бит. Считается, что таков информационный вес символа двоичного алфавита.

1.6.2. Информационный вес символа произвольного алфавита

Ранее мы выяснили, что алфавит любого естественного или формального языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита N связана с разрядностью двоичного кода i, требуемой для кодирования всех символов исходного алфавита, соотношением: N = 2 i .

Разрядность двоичного кода принято считать информационным весом символа алфавита. Информационный вес символа алфавита выражается в битах.

Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2 i .

Задача 1. Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение. Составим краткую запись условия задачи.

Известно соотношение, связывающее величины i и N : N = 2 i .

С учётом исходных данных: 8 = 2 i . Отсюда: i = 3.

Полная запись решения в тетради может выглядеть так:

1.6.3. Информационный объём сообщения

Информационный объём сообщения (количество информации в сообщении), представленного символами естественного или формального языка, складывается из информационных весов составляющих его символов.

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i;I = К • i.

Задача 2. Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?

Задача 3. Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?

1.6.4. Единицы измерения информации

В наше время подготовка текстов в основном осуществляется с помощью компьютеров. Можно говорить о «компьютерном алфавите», включающем следующие символы: строчные и прописные русские и латинские буквы, цифры, знаки препинания, знаки арифметических операций, скобки и др. Такой алфавит содержит 256 символов. Поскольку 256 = 2 8 , информационный вес каждого символа этого алфавита равен 8 битам. Величина, равная восьми битам, называется байтом. 1 байт — информационный вес символа алфавита мощностью 256.

1 байт = 8 битов

Бит и байт — «мелкие» единицы измерения. На практике для измерения информационных объёмов используются более крупные единицы:

1 килобайт = 1 Кб = 1024 байта = 2 10 байтов
1 мегабайт = 1 Мб = 1024 Кб = 2 10 Кб = 2 20 байтов
1 гигабайт = 1 Гб = 1024 Мб = 2 10 Мб = 2 20 Кб = 2 30 байтов
1 терабайт = 1 Тб = 1024 Гб = 2 10 Гб = 2 20 Мб = 2 30 Кб = 2 40 байтов

Задача 4. Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа используемого алфавита? Сколько символов содержит алфавит, с помощью которого записано это сообщение?

Ответ: 8 битов, 256 символов.

Задача 5. В велокроссе участвуют 128 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер цепочкой из нулей и единиц минимальной длины, одинаковой для каждого спортсмена. Каков будет информационный объём сообщения, записанного устройством после того, как промежуточный финиш пройдут 80 велосипедистов?

Решение. Номера 128 участников кодируются с помощью двоичного алфавита. Требуемая разрядность двоичного кода (длина цепочки) равна 7, так как 128 = 2 7 . Иначе говоря, зафиксированное устройством сообщение о том, что промежуточный финиш прошёл один велосипедист, несёт 7 битов информации. Когда промежуточный финиш пройдут 80 спортсменов, устройство запишет 80 • 7 = 560 битов, или 70 байтов информации.

Ответ: 70 байтов.

Самое главное.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет опредёленный информационный вес — несёт фиксированное количество информации.

1 бит — минимальная единица измерения информации.

Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2 i .

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i: I = K•i.

1 байт = 8 битов.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (210) раза.

Вопросы и задания.

1.Ознакомтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

Измерение информации

Урок 10. Информатика 7 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Измерение информации”

На прошлых уроках мы узнали:

Читайте также:
Компьютер - как устроен внутри, принцип работы, назначение

· Алфавитом языка называется набор всех различных символов, которые используются для представления информации на этом языке.

· Любой алфавит характеризуется своей мощностью, так называется количество символов, которые в него входят.

· Мощность двоичного алфавита – всего два символа.

· Двоичным кодированием называется запись информации с помощью символов двоичного алфавита, а двоичным кодом – код информации, получившийся в результате двоичного кодирования.

· Двоичное кодирование универсально, это означает, что с помощью двоичного кода можно представить любую информацию.

· На компьютере любая информация хранится в виде двоичных кодов.

· Алфавитный подход к измерению информации.

· Информационный вес символа.

· Информационный объём сообщения.

· Единицы измеряется информации.

Как мы помним, информация для человека – это набор сигналов, которые человек получает из различных источников. Человек, каким-то образом их воспринимает и интерпретирует, придёт им какое-то значение. Однако разные люди могут интерпретировать сигналы по-разному. Так одно и то же сообщение, то есть один и тот же набор сигналов, может нести разным людям совершенно разную информацию. Как же тогда можно измерить информацию?

Всего существует два подхода к измерению информации. Первый подход – содержательный. Как ясно из названия, он оценивает содержание информации. А как же можно оценить содержание информации? Универсально оценить содержание любой информацию позволяют её свойства: объективность, достоверность полнота, актуальность, полезность и понятность. Однако, часть свойств информации субъективна, то есть для разных людей информация может быть по-разному полезна, понятна или актуальна. Потому измерение информации с помощью этого подхода часто тоже субъективно. Для того, чтобы объективно измерить информацию нельзя опираться на её содержание.

Измерить информацию независимо от её содержания позволяет алфавитный подход. Рассмотрим его подробнее. Прежде чем что-нибудь выразить количественно, необходимо установить, для этого единицу измерения. Так расстояние измеряется в метрах, а время в секундах. А в чём же измеряется информация? В алфавитном подходе считается, что каждый символ алфавита, который использован для записи информации, имеет некоторый информационный вес. Это означает, что он несёт некоторое количество информации. Все символы одного и того же алфавита имеют одинаковый информационный вес. Информационный вес каждого из символов алфавита зависит от мощности этого алфавита. Минимальная единица измерения информации – это информационный вес одного символа двоичного алфавита. Эта величина получила название один бит. Слово бит на английском языке (Bit) произошло как результат сокращения словосочетания «Binary digit», что в переводе на русский язык, означает «двоичный символ».

Почему же именно один бит был принят в качестве минимальной единицы измерения информации? Как мы помним из прошлого урока, любую информацию можно записать в виде её двоичного кода, то есть представить её как совокупность двоичных символов. В то же время меньшей информационной единицы, чем один бит просто не существует. Наверняка у вас возник вопрос, почему? Вспомним, чем является любой алфавит. Любой алфавит – это знаковая система. А какая знаковая система минимальна? Сколько символов она содержит? 2. Так как 1 символ, вне знаковой системы не может нести информацию. То есть двоичный алфавит – это минимальная знаковая система.

Раньше мы узнали, что алфавит любого языка, естественного или формального можно заменить двоичным алфавитом. Для этого всем символам алфавита можно присвоить уникальные двоичные коды одинаковой разрядности. Причём минимальная разрядность двоичного кода, необходимая, для кодирования одного символа алфавита, зависит от мощности кодируемого алфавита. Запишем выражение для этой зависимости. Мощность алфавита обозначим латинской буквой «М», а минимальную необходимую разрядность двоичного кода – буквой «i». Тогда M = 2 i , или перемноженной последовательности из i двоек. При этом, если мощность алфавита нельзя получить простым перемножением двоек, то она увеличивается до числа, которое можно получить таким образом. Это делается потому, что иначе двоичный код с меньшей разрядностью не сможет уникальным образом закодировать все символы алфавита.

Информационным весом символа называется, количество информации, которое он несёт в рамках своего алфавита. Она равна минимальной разрядности двоичного кода, необходимой для равномерного кодирования алфавита этого символа. Информационный вес символа, как и любая информация измеряется в битах.

Задача: алфавит русского языка содержит:

· тридцать три буквы,

· десять арабских цифр,

· одиннадцать знаков препинания,

Вычислить информационный вес одного символа из алфавита русского языка.

Читайте также:
Двумерные массивы - определение, описание матрицы

В начале нужно найти мощность русскоязычного алфавита M. Для этого посчитаем общее число всех символов: букв – 33, количество цифр – 10, количество знаков препинания – 11 и добавим ещё 1, то есть пробел. M = 33 + 10 + 11+ 1 = 55. Общая мощность русского алфавита равна 55 символам. Теперь найдём, какая разрядность двоичного кода потребуется, чтобы закодировать 1 символ алфавита мощностью 55 символов. Информационный вес символа будет равен этой разрядности. То есть M = 55 = 2 i . Число 55 мы не можем получить простым перемножением двоек. Поэтому увеличим число до 64-х. Для того, чтобы получить 64, нужно перемножить 6 двоек или 2 6 . i = 6. Мы можем дать ответ: информационный вес одного символа русского алфавита – 6 бит.

Таким образом мы научились измерять информацию, которую несёт 1 символ алфавита. Однако в действительности информация передаётся целыми сообщениями, которые складываются из множества символов. Как же измерить такую информацию? Размер информации, которую несёт сообщение, называется его информационным объёмом. Он складывается из информационных весов всех символов, из которых состоит сообщение. Его можно рассчитать следующим образом… Обозначим информационный объём сообщения латинской буквой «V», а латинской буквой «L» – длину сообщения, в символах. Так V = i × L. То есть информационный объём равен произведению информационного веса одного символа и количества символов в сообщении.

Задача: сообщение содержит 296 бит информации. Его длина – 37 символов. Какова максимальная мощность алфавита, с помощью символов которого записано это сообщение?

Так как мы знаем информационный объём сообщения и его длину – мы можем найти информационный вес одного его символа. Информационный вес символа равен информационному объёму сообщения делённому на длину сообщения, i = V / L. 296 / 37 = 8 бит. Информационный вес одного символа нашего алфавита – восемь бит. Так как мы знаем информационный вес каждого символа алфавита, то есть разрядность двоичного кода символа такого алфавита, мы можем найти его максимальную мощность. Максимальная мощность равна двум в степени информационного веса символа. M = 2 i = 2 8 = 256. Мы можем дать ответ: максимальная мощность алфавита – 256 символов.

Итак, минимальная единица измерения информации один бит, и мы можем выразить с помощью этой величины любой объём информации, но всегда ли это удобно? Ведь текст на компьютере может содержать десятки и даже сотни тысяч символов, а звуки и изображения представляются миллиардами символов двоичного кода. Для удобства измерения такой информации были введены и более крупные единицы.

Первая из них – байт, рассмотрим, как же он появился и чему равен. В самом начале большая часть информации на компьютерах была текстовой. Для набора информации использовалось несколько алфавитов, или кодировок. Большинство из них содержало по 256 символов. Это означает что информационный вес одного символа в таком алфавите был 8 бит. Так же именно 8 бит информации могли одновременно обрабатывать процессоры того времени. Эта величина и была названа байтом.

Так же существуют и ещё более крупные единицы информации, например килобайты (Кб). Некоторые из вас могут подумать, что в 1 килобайте 1000 байт, так же как в 1 килограмме – 1000 грамм. Однако это не верно. Для более удобного измерения информации на компьютере 1 килобайт содержит не 1000, а 1024 байта. Почему именно 1024? Потому, что 1024 = 2 10 . Есть и ещё более крупные величины. Так один мегабайт (Мб) содержит 1024 Кб. Ещё десять лет назад информация, содержащаяся на компьютере, измерялась в гигабайтах. Один гигабайт (Гб) содержит 1024 Мб. Сейчас на одном домашнем компьютере могут храниться терабайты (Тб) информации, и в 1 Тб – сколько, как вы думаете? – Правильно: 1024 Гб.

Задача: на заводе работает автоматическая система учёта рабочего времени. По приходу на работу, и при уходе с работы сотрудник вставляет свою карту-пропуск в специальное устройство и оно заносит в память сообщение, которое состоит из 2 частей: уникального двоичного кода сотрудника и текущего времени. Найти минимальный информационный объём, который устройство внесло в память за день, если известно, что:

· всего на заводе работает 714 сотрудников;

· на работу вышло 698 сотрудников;

· часть сообщения, которая содержит текущее время, имеет информационный объём 3 байта;

· все уникальные двоичные коды сотрудников имеют одинаковую разрядность.

Итак, минимальный информационный объём – Vобщ., который устройство занесло в память в течение дня можно найти, умножив информационный объём одного сообщения Vсообщ. на количество сообщений Nсообщ. Количество сообщений Nсообщ. равно количеству сотрудников Nсотр., которые вышли на работу в течение дня, умноженному на 2, так как на каждого сотрудника приходится 2 сообщения: одно – когда он приходит на работу, а второе – когда уходит. Nсообщ. = Nсотр. × 2 = 1396 сообщений за день.

Читайте также:
Информационная модель - суть, характеристики, разновидности

Информационный объём одного сообщения состоит из информационного объёма уникального двоичного кода сотрудника Vкода и информационного объёма времени, который равен 3 байтам. Теперь нам нужно найти информационный объём уникального двоичного кода сотрудника. Мы можем представить всех сотрудников, которые работают на заводе, в качестве алфавита мощностью 714 символов. Нам остаётся найти информационный вес одного символа.

Как мы помним это можно сделать по формуле M=2 i . Мы не можем получить 714 путём перемножения двоек, зато мы можем так получить число 1024. 1024 = 2 10 . Значит информационный объём Vкода = 10 бит. Теперь найдём информационный объём Vсообщ. он состоит из 10 бит уникального двоичного кода и 3 байт времени. Переведём 3 байта в биты, для этого умножим число 3 на 8. 3 × 8 = 24 бита и 10 бит кода. Информационный объём одного сообщения Vсообщ. = 24 + 10 = 34 бита. Теперь остаётся лишь найти информационный объём Vобщ. Для этого информационный объём одного сообщения Vсообщ. умножим на количество сообщений Nсообщ. 34 × 1396 = 47 464 бита. Для удобства переведём в более крупные величины. 47 464 / 8 = 5933 байта, 5933 / 1024 = 5,8 Кб. Ответ: За день в память устройства поступило 5,8 Кб информации.

Важно запомнить:

· Алфавитный подход позволяет измерить объём информации не зависимо от её содержания. При этом каждый символ несёт, некоторое количество информации, имеет информационный вес (i).

· Минимальная единица измерения информации – 1 бит.

· Мощность алфавита равна двум в степени, равной информационному весу символа (M = 2 i ).

· Информационный объём сообщения равен произведению информационного веса одного символа и длины сообщения (V = i × L).

· 1 байт = 8 бит.

· Байты, килобайты (Кб), мегабайты (Мб), гигабайты (Гб), терабайты (Тб) – единицы измерения информация. Каждая следующая больше предыдущей в 1024 раза.

7.2. подходы к измерению информации

7.2. подходы к измерению информации

Подходы к раскрытию темы в учебной литературе

Проблема измерения информации напрямую связана с проблемой определения информации, поскольку сначала надо уяснить, ЧТО собираемся измерять, а потом уже — КАК это делать, какие единицы использовать. Если опираться на расплывчатое, интуитивное представление ученика об информации, то невозможно дать сколько-нибудь логичное определение количества информации, ввести единицы ее измерения.

Характерным приемом для ряда учебников является следующий: обсуждая вопрос об измерении информации, тут же переходят к описанию компьютерного представления информации в форме двоичного кода. Затем дается утверждение о том, что количество информации равно количеству двоичных цифр (битов) в таком коде. Вот цитата из учебника [16]: «В современной вычислительной технике информация чаще всего кодируется с помощью последовательностей сигналов всего двух видов: намагничено или не намагничено, включено или выключено, высокое или низкое напряжение и т.д. Принято обозначать одно состояние цифрой 0, а другое — цифрой 1. Такое кодирование называется двоичным кодированием, а цифры 0 и 1 называются битами (от англ. Bit — binary digit — двоичная цифра)». В следующем параграфе сказано: «А как узнать количество информации в сообщении, в каких единицах эту информацию измерять? Для двоичных сообщений в качестве такой числовой меры используется количество бит в сообщении. Это количество называется информационным объемом сообщения».

В учебнике [5] написано: «Чтобы стандартизировать измерение количества информации, договорились за единицу количества информации принять сообщение, состоящее из одного символа двухсимвольного алфавита. Использование для измерения количества информации алфавитов с другим числом символов можно уподобить переходу к более крупным единицам измерения». В этом же учебнике содержатся рассуждения и о другом подходе к представлению о количестве информации — содержательном, семантическом: «Количество информации, получаемой из сообщения, зависит от имеющихся предварительных знаний».

Вопрос об измерении информации необходимо раскрывать в контексте рассматриваемого подхода к определению информации. Здесь обязательно должна присутствовать логическая последовательность, пусть даже она приводит в тупик.

В учебнике [26] последовательно прослеживаются два подхода к измерению информации: с точки зрения содержательной и кибернетической концепций.

Методические рекомендации по изучению темы

Содержательный подход к измерению информации

Читайте также:
Как начать программировать - советы новичкам

ª От чего зависит информативность сообщения, принимаемого человеком.

ª Единица измерения информации.

ª Количество информации в сообщении об одном из 7V равновероятных событий.

С позиции содержательного подхода просматривается следующая цепочка понятий: информация — сообщение — информативность сообщения — единица измерения информации — информационный объем сообщения.

Исходная посылка: информация — это знания людей. Следующий вопрос: что такое сообщение? Сообщение — это информационный поток, который в процессе передачи информации поступает к принимающему его субъекту. Сообщение — это и речь, которую мы слушаем (радиосообщение, объяснение учителя), и воспринимаемые нами зрительные образы (фильм по телевизору, сигнал светофора), и текст книги, которую мы читаем и т.д.

Вопрос об информативности сообщения следует обсуждать на примерах, предлагаемых учителем и учениками. Правило: информативным назовем сообщение, которое пополняет знания человека, т. е. несет для него информацию. Для разных людей одно и то же сообщение, с точки зрения его информативности, может быть разным. Если сведения «старые», т. е. человек это уже знает, или содержание сообщения непонятно человеку, то для него это сообщение неинформативно. Информативно то сообщение, которое содержит новые и понятные сведения.

Нельзя отождествлять понятия «информация» и «информативность сообщения». Следующий пример иллюстрирует различие понятий. Вопрос: «Содержит ли информацию вузовский учебник по высшей математике с точки зрения первоклассника?». Ответ: «Да, содержит с любой точки зрения! Потому что в учебнике заключены знания людей: авторов учебника, создателей математического аппарата (Ньютона, Лейбница и др.), современных математиков». Эта истина — абсолютна. Другой вопрос: «Будет ли информативным текст этого учебника для первоклассника, если он попытается его прочитать? Иначе говоря, может ли первоклассник с помощью этого учебника пополнить собственные знания?» Очевидно, что ответ отрицательный. Читая учебник, т.е. получая сообщения, первоклассник ничего не поймет, а стало быть, не обратит его в собственные знания.

При объяснении этой темы можно предложить ученикам поиграть в своеобразную викторину. Например, учитель предлагает детям перечень вопросов, на которые они молча записывают ответы на бумагу. Если ученик не знает ответа, он ставит знак вопроса. После этого учитель дает правильные ответу на свои вопросы, а ученики, записав ответы учителя, отмечают, какие из них оказались для них информативными (+), какие — нет (—). При этом для сообщений, отмеченных минусом, нужно указать причину отсутствия информации: не новое (это я знаю), непонятное. Например, список вопросов и ответы одного из учеников могут быть следующими.

1. Какой город является столицей Франции

Столица Франции — Париж

Столица Франции — Париж

изучает коллоидная химия

Коллоидная химия изучает дисперсионные состояния систем, обладающих высокой степенью раздробленности

3. Какую высоту и вес имеет Эйфелева башня?

Эйфелева башня имеет высоту 300 метров и вес 9000 тонн.

Введение понятия «информативность сообщения» является первым подходом к изучению вопроса об измерении информации в рамках содержательной концепции. Если сообщение неинформативно для человека, то количество информации в нем, с точки зрения этого человека, равно нулю. Количество информации в информативном сообщении больше нуля.

Для определения количества информации нужно ввести единицу измерения информации. В рамках содержательного подхода такая единица должна быть мерой пополнения знаний субъекта; иначе можно еще сказать так: мерой уменьшения степени его незнания. В учебнике [26] дано следующее определение единицы информации: «Сообщение, уменьшающее неопределенность знаний в 2 раза, несет 1 бит информации». Немного дальше приводится определение для частного случая: «Сообщение о том, что произошло одно событие из двух равновероятных, несет 1 бит информации».

Определение бита — единицы измерения информации может оказаться сложным для понимания учениками. В этом определении содержится незнакомое детям понятие «неопределенность знаний». Прежде всего нужно раскрыть его. Учитель должен хорошо понимать, что речь идет об очень частном случае: о сообщении, которое содержит сведения о том, что произошло одно из конечного множества (N) возможных событий. Например, о результате бросания монеты, игрового кубика, вытаскивания экзаменационного билета и т. п. Неопределенность знания о результате некоторого события — это число возможных вариантов результата: для монеты — 2, для кубика — 6, для билетов — 30 (если на столе лежало 30 билетов).

Еще одной сложностью является понятие равновероятности. Здесь следует воспользоваться интуитивным представлением детей, подкрепив его примерами. События равновероятны, если ни одно из них не имеет преимущества перед другими. С этой точки зрения выпадения орла и решки — равновероятны; выпадения каждой из шести граней кубика — равновероятны. Полезно привести примеры и неравновероятных событий. Например, в сообщении о погоде в зависимости от сезона сведения о том, что будет дождь или снег могут иметь разную вероятность. Летом наиболее вероятно сообщение о дожде, зимой — о снеге, а в переходный период (в марте или ноябре) они могут оказаться равновероятными. Понятие «более вероятное событие» можно пояснить через родственные понятия: более ожидаемое, происходящее чаще в данных условиях. В рамках базового курса не ставится задача понимания учениками строгого определения вероятности, умения вычислять вероятность. Но представление о равновероятных и неравновероятных событиях должно быть ими получено. Ученики должны научиться приводить примеры равновероятных и неравновероятных событий.

Читайте также:
Системное программное обеспечение компьютера - классификация и виды

При наличии учебного времени полезно обсудить с учениками понятия «достоверное событие» — событие, которое обязательно происходит, и «невозможное событие». От этих понятий можно оттолкнуться, чтобы ввести интуитивное представление о мере вероятности. Достаточно сообщить, что вероятность достоверного события равна 1, а невозможного — 0. Это крайние значения. Значит, во всех других «промежуточных» случаях значение вероятности лежит между нулем и единицей. В частности, вероятность каждого из двух равновероятных событий равна . При углубленном варианте изучения базового курса можно использовать материал, приведенный в подразделе 1.1 «Вероятность и информация» второй части учебника [26].

Возвращаясь к вопросу об измерении количества информации, заключенной в сообщении об одном из N равновероятных событий, предлагаем следующую логическую цепочку раскрытия темы.

Объяснение удобно начать с частного определения бита как меры информации в сообщении об одном из двух равновероятных событий. Обсуждая традиционный пример с монетой (орел — решка), следует отметить, что получение сообщения о результате бросания монеты уменьшило неопределенность знаний в два раза: перед подбрасыванием монеты было два равновероятных варианта, после получения сообщения о результате остался один единственный. Далее следует сказать, что и для всех других случаев сообщений о равновероятных событиях при уменьшении неопределенности знаний в два раза передается 1 бит информации.

Примеры, приведенные в учебнике, учитель может дополнить другими, а также предложить ученикам придумать свои примеры. Индуктивно, от частных примеров учитель вместе с классом приходит к обобщенной формуле: 2i = N. Здесь N — число вариантов равновероятных событий (неопределенность знаний), а i — количество информации в сообщении о том, что произошло одно из N событий.

Если N— известно, а i является неизвестной величиной, то данная формула превращается в показательное уравнение. Как известно, показательное уравнение решается с помощью функции логарифма: i= log2N. Здесь учителю предоставляются два возможных пути: либо с опережением уроков математики объяснить, что такое логарифм, либо «не связываться» с логарифмами. Во втором варианте следует рассмотреть с учениками решение уравнения для частных случаев, когда N есть целая степень двойки: 2, 4, 8, 16, 32 и т.д. Объяснение происходит по схеме:

Если N = 2 = 21, то уравнение принимает вид: 2i = 21, отсюда i = 1.

Если N = 4 = 22, то уравнение принимает вид: 21 = 22, отсюда i = 2.

Если N = 8 = 23, то уравнение принимает вид: 2i = 23, отсюда i = 3 и т. д.

В общем случае, если N = 2k, где k — целое число, то уравнение принимает вид 2i = 2k и, следовательно, i = k. Ученикам полезно запомнить ряд целых степеней двойки хотя бы до 210 = 1024. С этими величинами им предстоит еще встретиться в других разделах.

Для тех значений N, которые не являются целыми степенями двойки, решение уравнения 2i = N можно получать из приведенной в учебнике [26] таблицы в §2. Совсем не обязательно говорить ученикам, что это таблица логарифмов по основанию 2. Например, желая определить, сколько же бит информации несет сообщение о результате бросания шестигранного кубика, нужно решать уравнение: 2i = 6. Поскольку 22 Предмет: Информатика Автор: М.П.ЛАПЧИК Год издания: 2001 Язык учебника: русский Рейтинг: Просмотров: 5725

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: