Использование энергии солнца на Земле виды и источники солнечной энергии

Использование энергии солнца на Земле

Средняя оценка: 4.4

Всего получено оценок: 334.

Средняя оценка: 4.4

Всего получено оценок: 334.

Солнце — это гигантский светящийся источник излучения, посылающий непрерывно огромное количество энергии в направлении Земли. Жизнь на Земле была бы невозможна без солнечного тепла и света. Благодаря солнечной энергии происходит кругооборот воздуха и воды, идут процессы фотосинтеза в растениях, выделяется кислород.

Как использовать энергию Солнца?

Для получения энергии человечество в основном опустошает запасы угля, нефти и газа, которых с каждым днем становится все меньше. Использование атомной энергии сопряжено с огромными рисками и несет огромную опасность для окружающей среды. Поэтому над увеличением использования энергии солнца на Земле работают ученые всех стран мира.

Рис. 1. Солнце — светящийся.

Солнечное излучение достигает Землю всего за 480 сек.

Сколько энергии от Солнца можно получить

Солнце посылает в сторону Земли 20 миллионов эксаджоулей (ЭДж) в год. 1 ЭДж=10 18 Дж. На Земле поступает примерно 25%. Из этой энергии 70% поглощается атмосферой, отражается и теряется. Непосредственно на поверхность Земли доходит 1,54 миллиона эксаджоулей в год. Эта величина превышает в 5 раз весь запас энергии углеводородного топлива (уголь, нефть, газ), накопленный на Земле за миллионы лет. Большая часть энергии на поверхности нашей планеты превращается в тепло. Тепло греет землю, воду и воздух. На это тратится малая часть поступившей энергии. Например, растения потребляют всего 0,5% от поступившей солнечной энергии. Таким образом, резервы энергии, которые человечество может использовать вместо сжигания углеводородов, поистине безграничны.

Примеры использования энергии Солнца на Земле

Самым простым примером использования солнечной энергии является летний душ на даче, в котором вода нагревается благодаря Солнцу. Солнечная энергия сегодня используется в таких сферах жизнедеятельности, как:

  • Энергоснабжение частных домов, пансионатов, санаториев;
  • Энергоснабжение населённых пунктов, находящихся вдали от городской инфраструктуры;
  • Сельское хозяйство;
  • Космонавтика;
  • Экотуризм;
  • Уличное освещение, декоративная подсветка на дачных участках;
  • Жилищно-коммунальное хозяйство;
  • Зарядные устройства (зарядка калькуляторов, часов, мобильных гаджетов).

Еще недавно эти технологии применялись только в военной сфере и космонавтике. С помощью фотоэлементов на солнечных батареях снабжались энергией спутники и наземные специальные объекты.

Рис. 2. Космический аппарат с солнечными батареями.

Сейчас солнечная энергетика стала использоваться в быту и промышленном производстве. Сегодня часто можно встретить гелиосистемы в южных регионах. Чаще всего они используются в частном секторе, а также в мелком туристическом бизнесе (санатории, дома отдыха и т. п.).

Как сегодня используется солнечная энергия

Энергию солнечного излучения преобразовывают на Земле в тепловую и электрическую энергии с помощью пассивных и активных систем. К пассивным системам относятся здания, при строительстве которых применяют стройматериалы, которые эффективно поглощают энергию солнечной радиации. В свою очередь, к активным системам относятся тепловые коллекторы, преобразовывающие солнечную радиацию в энергию, а также фотоэлементы, конвертирующие ее в электричество.

Солнечные батареи

Полупроводниковые элементы (кремниевые пластины, Si) генерируют электрический ток при попадании на них солнечного света, благодаря фотоэффекту который открыл Альберт Энштейн. Набор из большого числа пластин фотоэлементов образует солнечную батарею. Такие фотоэлектрические преобразователи легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются достаточно эффективными в качестве преобразователей солнечной мощности. Работы над повышением коэффициента полезного действия (кпд) солнечных батарей ведутся непрерывно. Если в середине прошлого века их кпд составлял 1%, то сейчас он достигает 15%.

Рис. 3. Солнечные батареи на крышах домов или на земле.

К 2020 году Китай планирует разместить в космосе солнечную электростанцию.

Что мы узнали?

Итак, мы узнали, как с помощью пассивных и активных систем энергия солнечного излучения преобразовывается в тепловую и электрическую энергии. Солнечные батареи на базе полупроводниковых элементов позволяют создавать экологически чистые электростанции особенно в регионах с большим количеством солнечных дней. На основе этой информации можно подготовить доклад “Использование энергии Солнца на Земле”. Для презентации доклада в классе можно продемонстрировать работу фотоэлемента, например, с помощью фотоэкспонометра.

Прорыв в будущее — основные направления использования энергии солнца на земле

Обновлено: 3 января 2021

  • Где используется солнечная энергия?
  • Особенности применения
  • Пассивные системы
  • Активные системы
    • Солнечные фотоэлементы
    • Солнечные коллекторы
  • Преимущества солнечных установок
  • Проблемы использования солнечной энергии
  • Перспективы развития
  • Рекомендуемые товары

Где используется солнечная энергия?

О том, чтобы использовать солнечную энергию в своих целях, человек начал задумываться сравнительно недавно, хотя на практике пользовался ей на протяжении всей своей истории. Идея об аккумулировании и практическом применении возникла в начале XX века, но технологических возможностей для этого на то время не было. Прорыв совершился в конце века, когда появились фотоэлектрические панели, способные производить электроэнергию в ощутимых количествах. Вопрос важный и заслуживает подробного рассмотрения.

Использование энергии Солнца на земле является повсеместным, хоть и неосознанным явлением. Оно настолько обыденно и привычно, что люди редко задумываются о возможностях и перспективах солнечной энергетики. Однако, специалисты в разных отраслях научной и производственной деятельности давно разрабатывают технологии, позволяющие получать бесплатную и неиссякаемую энергию.

Если несколько десятилетий назад все ограничивалось нагревом воды в емкостях для летнего душа на дачном участке, то сегодня существуют различные способы использования солнечной энергии, наиболее развитые в следующих отраслях:

  • космос и авиация;
  • сельское хозяйство;
  • обеспечение энергией спортивных и медицинских объектов;
  • освещение участков частных домов или городских улиц;
  • использование в быту;
  • электрификация экспедиций, передвижных исследовательских или военных пунктов и т.д.
Читайте также:
Электрическое напряжение определение физической величины, основные виды

Этот список не будет полным, если не назвать СЭС, электростанции, где используется солнечная энергия. В последние годы их немало построено в США, Испании, ЮАР и других странах. Их мощность пока еще не способна превзойти уровень ГЭС, но технологии не стоят на месте и перспективы развития весьма многообещающие. Можно с уверенностью сказать, что через пару десятков лет на вопрос: «Где используется энергия Солнца на Земле?» можно будет услышать ответ: «Везде».

Особенности применения

Свет и тепло Солнца используются с помощью различных технологических методик. Как правило, выработка электроэнергии имеет целью питание отдельных или массовых потребителей, а тепловая энергия служит для обогрева жилья, теплиц, промышленных и общественных помещений.

Использование солнечной энергии на Земле ведется по двум направлениям: пассивное и активное. Оба способа имеют свои особенности и возможности, которые следует рассмотреть внимательнее.

Пассивные системы

Пассивные системы — это различные сооружения или строения, в которых использование энергии Солнца происходит путем потребления. Например, существуют дома, построенные из специальных материалов, которые способны поглощать или перерабатывать полученную тепловую энергию. Обогрев таких зданий становится проще или в нем вовсе исчезает необходимость.

Необходимо понимать, что в виду имеются не какие-то современные и продвинутые материалы, созданные на высокотехнологическом оборудовании. Дома, образующие пассивные системы, создаются из обычной древесины, теплоизолирующих и светоизолирующих панелей. Даже обычная ориентация окон дома на южную сторону автоматически переводит дом в разряд пассивных гелиосистем.

Первым в истории зафиксированным случаем, когда использование солнечной энергии было сознательным действием, была постройка дома Плинием Младшим в Италии (100 г. Н. Э.). Слюдяные окна оказались эффективным теплоизолятором, способным удерживать тепловую энергию, полученную от Солнца.

В современном мире интерес к постройке зданий-пассивных гелиосистем то возрастает, то вновь падает. Энергетический кризис вынуждает активно искать способы получения дешевой альтернативной энергии, но при улучшениях экономической обстановки ситуация разворачивается в обратную сторону. Однако, общая обстановка демонстрирует постоянное развитие и продвижение гелиосистем в технике и быту.

Активные системы

Активные солнечные системы получают энергию и преобразуют ее тем или иным способом. В данном случае используются специально изготовленные приспособления и устройства, для которых получение, преобразование и передача энергии является основной и единственной задачей, а не дополнительной функцией, как у пассивных гелиосистем. Существуют довольно простые и более сложные конструкции, выполняющие разные задачи. По функционалу их можно разделить на фотоэлектрические элементы и солнечные коллекторы.

Первые занимаются выработкой электрического тока из энергии, полученной от нашего светила. Они обладают широкими возможностями и встречаются практически везде, где применяют энергию Солнца.

Вторые — коллекторы — используются только как источник тепловой энергии для отопительных систем частных домов или иных помещений относительно небольшого размера. И те, и другие устройства обладают собственными преимуществами и недостатками. Рассмотрим их подробнее.

Солнечные фотоэлементы

Фотоэлектрические элементы получают солнечную энергию и вырабатывают из нее электрический ток. Такова общая схема, на практике все несколько сложнее. Солнечные лучи, попадая на поверхность фотоэлементов, воздействуют на кремниевые пластины, в которых начинается процесс замещения электронов. Они начинают активно совершать p-n переход, т.е. появляется постоянный фототок. Остается только припаять провода к соответствующим контактам, и можно снимать постоянное напряжение определенной величины. Если собрать такие элементы в батарею, то в результате можно получать вполне существенный ток, пригодный для зарядки аккумуляторов или практического использования.

Выработка тока фотоэлементами нестабильна, зависит от внешних факторов — погоды, времени года и суток, наличия облачности. Кроме того, солнечные батареи дают постоянный ток. Для обеспечения потребителей электротоком со стандартными параметрами необходимо преобразовать полученное напряжение.

Поэтому обычный состав комплекса выглядит следующим образом:

Работа системы заключается в приеме солнечной энергии фотоэлементами и сбрасывании напряжения на аккумуляторы. Уровень заряда находится под управлением контроллера, который выполняет функции диспетчера и регулирует режим заряда и отдачи энергии. Преобразование постоянного тока в переменный выполняет инвертор, с которого питание подается на стандартные приборы потребления. Использование солнечной энергии таким способом наиболее эффективно, так как в результате получается универсальный вид, пригодный для питания большого количества установок, приборов и устройств.

Фотоэлементы, или солнечные батареи, как их называют в обиходе, бывают нескольких видов: кремниевые и пленочные.

Количество кремния в окружающей природе очень велико, чем и объясняется популярность этого типа фотоэлементов. Существуют разные виды кремниевых солнечных батарей:

  1. Монокристаллические. Их КПД приближается к 20%, что для современных фотоэлементов весьма высокий показатель. Производятся из очищенного материала, монокристалла, разрезанного на тонкие пластинки. Внешне такие панели похожи на соты или ячейки черного цвета. Самые дорогие и качественные
  2. Поликристаллические. При изготовлении используется срез из медленно охлажденного расплава кремния. Полученные пластинки состоят из множеств кристаллов, ориентированных в разные стороны. КПД — до 18%. Цвет ячеек синий, отличить их легко. Стоимость заметно ниже, чем у монокристаллических панелей
  3. Аморфные. Представляют собой слой силана (кремневодорода), нанесенного на гибкую подложку. КПД всего 5%, но способность поглощать солнечные лучи намного выше — почти в 20 раз, поэтому аморфные панели весьма хороши для пасмурной погоды. Стоимость самая низкая из всех кремниевых видов

Пленочные батареи производятся из различных полимеров, способных демонстрировать полупроводниковый эффект. Их разрабатывают с целью снижения себестоимости производства фотоэлементов, а также для улучшения характеристик панелей. Существуют разные виды:

  • на основе теллурида кадмия;
  • на базе селенида меди-индия;
  • на полимерной основе.

Пока пленочные образцы уступают кремниевым как по КПД, так и по остальным показателям (кроме цены), но производители не теряют бодрости и уверяют пользователей в скором изменении ситуации.

Использование фотоэлементов для производства электротока позволяет получать количество энергии, достаточное для питания любых потребителей, главное — достаточное количество панелей. В этом заключается одно из основных преимуществ солнечной энергетики — способность расширяться путем наращивания количества светоприемных элементов, а не с помощью замены всего оборудования.

Читайте также:
Уравнение Бернулли физический и геометрический смысл, вывод формулы Бернулли общего вида для идеальной жидкости, для потока реальной жидкости, для идеального газа

Солнечные коллекторы

Эти устройства действуют по совершенно иному принципу. Они не используют высокотехнологичных материалов, получая от Солнца только тепловую энергию. Принцип действия коллекторов основан на способности солнечных лучей заметно нагревать предметы. Наиболее простая модель представляет собой плоский ящик черного цвета, накрытый прозрачной крышкой. Темная поверхность принимает солнечное тепло, нагревается, но отдавать его в окружающую атмосферу не может — мешает эффект парника, образованный прозрачной крышкой. На практике конструкции солнечных коллекторов несколько отличаются:

  1. Открытые. Самые простые (если не примитивные) приемники, представляющие собой продолговатые лотки из черной пластмассы, наполненные водой. Лотки нагреваются и отдают тепло воде. Которая используется для летнего душа или подогрева воды в бассейне. Этот вид не может похвастаться ни КПД, ни долговечностью, но простота и возможность сделать открытые коллекторы самостоятельно дали определенную популярность
  2. Трубчатые. Приемниками энергии являются вакуумные стеклянные трубки. Они имеют коаксиальную конструкцию (тип «труба в трубе», между ними вакуум для теплоизоляции). Соединяются в распределитель и подключаются к отопительному контуру
  3. Плоские. Больше всего они напоминают вышеупомянутую модель — черный ящик с прозрачной крышкой. На поверхность днища плотно крепится трубка с водой, получающей тепловую энергию от контакта с нагретым материалом

Использовать солнечные коллекторы можно только в определенных условиях. Если стоит мороз, полезный эффект будет практически незаметен. Необходимо, чтобы температура воздуха было довольно высока, что делает использование солнечного обогрева доступным только в достаточно теплых регионах. Коллекторы используются только для обогрева помещений, поэтому их функционал и возможности заметно ниже.

Преимущества солнечных установок

  • Основным преимуществом является неограниченно высокий ресурс источника — Солнца. На самом деле, поток энергии имеет определенные пределы, но на нынешнем этапе развития технологии достичь этого предела совершенно невозможно.
  • Вторым преимуществом является отсутствие стоимости энергии. Она просто есть, и ей можно и нужно пользоваться.
  • Кроме того, появление источника предсказуемо и может быть заранее рассчитано с точностью до секунд, что заметно отличает его от других альтернативных видов энергии.

Проблемы использования солнечной энергии

Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

Перспективы развития

Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

Солнечная энергия — огромный, неисчерпаемый и чистый ресурс

Солнечная выработка электроэнергии представляет собой чистую альтернативу электроэнергии из добываемого топлива, без загрязнения воздуха и воды, отсутствием глобального загрязнения окружающей среды и без каких-либо угроз для нашего общественного здравоохранения. Всего 18 солнечных дней на Земле содержит такое же количество энергии, какая хранится во всех запасах планеты угля, нефти и природного газа. За пределами атмосферы, солнечная энергия содержит около 1300 ватт на квадратный метр. После того, как она достигнет атмосферы, около одной трети этого света отражается обратно в космос, в то время как остальные продолжают следовать к поверхности Земли.

Усредненные по всей поверхности планеты, квадратный метр собирает 4,2 киловатт-часов энергии каждый день, или приблизительный энергетический эквивалент почти барреля нефти в год. Пустыни, с очень сухим воздухом и небольшим количеством облачности, могут получить более чем 6 киловатт-часов в день на квадратный метр в среднем в течение года.

Преобразование солнечной энергии в электричество

Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.

В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.

Как работают панели солнечных батарей

Солнечные фотоэлектрические (PV) панели на основе высокой, но удивительно простой технологии, которая преобразует солнечный свет непосредственно в электричество.

В 1839 году французский ученый Эдмонд Беккерель обнаружил, что некоторые материалы будут испускать искры электричества при ударе с солнечным светом. Исследователи обнаружили, что в ближайшее время это свойство, называемое фотоэлектрический эффект, может быть использовано; первая фотоэлектрическая (PV) ячейка изготовлена была из селена в конце 1800-х годов. В 1950 году ученые в Bell Labs пересматривали технологии и, используя кремний, произведенный в фотоэлементы, смогли преобразовать энергию солнечного света непосредственно в электричество.

Читайте также:
Все определения по физике за 9 класс основные понятия, термины, законы и формулы по термодинамике, динамике, механике, оптике, молекулярной физике

Компоненты PV ячейки

Наиболее важными компонентами PV ячейки являются два слоя полупроводникового материала, обычно состоящего из кристаллов кремния. Сам по себе кристаллизирующийся кремний является не очень хорошим проводником электричества, поэтому в него намеренно добавляют примеси — процесс, называемый допинг-этап.

Нижний слой из фотоэлементов обычно состоит из легированного борома, который в связке с кремнием создает положительный заряд (p), в то время как верхний слой, легированный фосфором, взаимодействуя с кремнием — отрицательный заряд (n).

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку и возвращаясь в n-слой.


беспилотные самолеты на солнечной энергии

Каждая ячейка генерирует очень мало энергии (несколько ватт), поэтому они сгруппированы в виде модулей или панелей. Панели затем либо используются как отдельные единицы или сгруппированы в более крупные массивы.

Переход к электрической системе с большим количеством солнечной энергии дает много преимуществ.

Стоимость солнечных батарей быстро уменьшается (в 1970 году -1кВт-ч электроэнергии, вырабатываемой с их помощью стоил 60 долларов, в 1980 году – 1доллар, сейчас -20-30 центов). Благодаря этому спрос на солнечные батареи растет на 25% в год, а ежегодный объем от продаваемых батарей превышает (по мощности) 40мВт. КПД солнечных батарей, достигавший в середине 70-х годов в лабораторных условиях 18%, составляет в настоящее время 28,5% для элементов из кристаллического кремния и 35% — из двухслойных пластин из арсенида галлия и антимода галлия. Разработаны многообещающие элементы из тонкопленочных (толщиной 1-2мкм) полупроводниковых материалов: хотя их КПД низок (не выше 16%), стоимость очень мала (не более 10% от стоимости современных солнечных батарей). В скором времени ученые предполагают, что стоимость 1кВт-ч будет равна 10 центам, что поставит солнечную энергетику на первые места в энергетической независимости многих стран.

Перовскит «удешевит» солнечную энергию

Еще в 2013 году новость разнеслась по просторам сети: минерал перовскит произведет революцию в солнечной энергетике. Применение вместо кремния перовскита позволит снизить стоимость производства электроэнергии при помощи солнечных батарей. Перовскит (титанат кальция) был обнаружен в начале 19 века в Уральских горах, назван в честь Л.А. Перовского (известного любителя минералов). Как компонент фотоэлемента начал использоваться в 2009 году.

Батареи покрываются инновационным недорогим фотоэлементом, основное достоинство которого в том, что он может конвертировать в энергию намного большее количество частей солнечного света. Перовскиты представляют собой кристаллическую структуру, которая позволяет с максимальной эффективностью впитывать солнечный свет. По предварительным оценкам использование батарей на основе перовскита может снизить стоимость киловатта энергии в семь раз.

«Главное преимущество новых фотоэлементов заключается не столько в эффективности, сколько в том, что материал чертовски дешев. Батареи на основе перовскита, в которых не используется кремний, могут сделать солнечную энергетику по-настоящему массовой».

Солнечная энергия для ЦОД

10 % всей производимой в мире электроэнергии потребляют серверные фермы. Так как энергоэффективные сети и возобновляемые источники энергии сейчас внедряются во всех отраслях, ЦОД не остались в стороне. Негативное влияние серверных ферм на окружающую среду давно уже на устах экологов. Поэтому владельцы дата-центров стремятся к снижению негативного воздействия своих ЦОД, прибегая к передовым энергосберегающим и «зеленым» технологиям выработки электроэнергии, сюда можно отнести фрикулинг, системы локальных генерирующих мощностей на базе возобновляемых источников энергии.

Как выход — солнечная электростанция рядом с серверной фермой, в тех странах, где это позволяют климатические условия. Она идеальна для серверных ферм, которые развернуты в тропиках или субтропиках. Ведь использование солнечных панелей на крыше ЦОД, кроме того что предоставит «зеленую энергию», так еще и поможет уменьшить тепловую нагрузку на здание, так как создаваемая ими тень минимизирует количество поглощаемого крышей тепла. Гелиоэлектростанция снизит общий негативный эффект дата-центра на экологию, и повысит надежность ЦОД расположенных в регионах, где наблюдаются перебои в работе центральной электросети.


крупная электростанция на базе возобновляемых источников энергии рядом с дата-центром Apple в городе Мейден, штат Северная Каролина (США)

Switch совместно с энергетической компанией Nevada Power начала сооружение рядом с Лас-Вегасом солнечной станции Switch Station мощностью 100 МВт. В американских СМИ компанию Switch называют «возмутителям спокойствия» на рынке коммерческих ЦОД, это один из крупнейших игроков, данной отрасли. Компания занимается сооружением и поддержкой datacenter facilities – зданий и и инженерной инфраструктуры без собственно вычислительной аппаратуры, ее основная модель взаимодействия с клиентами – colocation.


крупнейшая в мире гелиотермальная электростанция Айванпа мощностью 400 МВт

В 2015 году США и Япония начали разрабатывать новый механизм электроснабжения ЦОД за счет солнечной энергии. Проект предполагает исследование новых возможностей “… использования связки генерирующих мощностей на базе солнечной энергии и систем класса HVDC (высокое напряжение постоянного тока), применяемых для распределения генерируемой солнечными батареями электроэнергии на уровне ЦОД”. Такое комбинирование HVDC и солнечных панелей даст возможность развернуть единую систему резервного электропитания на базе аккумуляторных батарей, при этом можно будет экономить на капитальных и эксплуатационных расходах.

Интересно

Немецкий архитектор Андре Броезель из компании Rawlemon создал солнечую батарею в форме движущего стеклянного шара. Он называет его генератором нового поколения, который будет ловить максимальное количество лучей, так как он оснащен системой отслеживания перемещения солнца и датчиками смены погоды, а это на 35 % эффективней в сравнении с стандартными солнечными батареями.

Читайте также:
Равноускоренное движение - определение и график, путь, примеры

Японская энергетическая компания Shimizu Corporation в 2015 году обьявила о своем намерение построить крупную солнечную электростанцию на естественном спутнике нашей планеты — Луне. Электростанция в виде колец с солнечными батареями будет опоясывать Луну по примеру планеты Сатурн и передавать энергию на Землю. От такой солнечной станции Shimizu Corporation ожидает 13 тысяч тераватт энергии/ год. Еще не известна стоимость и дата начала такого космического строительства.

В институте прогрессивной архитектуры в Каталонии разработали солнечную панель, которая может функционировать на растениях, мхе и почве. Плюсом такой технологии является отказ от опасных токсичных материалов и тяжелых металлов в производстве солнечных панелей. Тут используются специальные бактерии в крохотных топливных ячейках, размещенных в земле под корнями растений. Бактерии нужны для выработки дешевой энергии в мини-батареях. Растения будут обеспечивать жизненный цикл бактерий, а вода служить в качестве подпитки для всей системы. Такая инновационная система может работать на территориях, где солнечного света не так уж и много, если заменить растения мхом, так как он может расти в тени.

Солнечная энергия

Пост опубликован: 28 апреля, 2017

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Солнечная энергия как альтернативный источник энергии

Способы преобразования энергии солнца для получения различных видов энергии, используемой человеком, можно разделить по видам получаемой энергии и способам ее получения, это:

Преобразование в электрическую энергию

Путем применения фотоэлектрических элементов

Фотоэлектрические элементы используются для изготовления солнечных панелей, которые служат приемниками солнечной энергии в системах солнечных электрических станций. Принцип работы основан на получении разности потенциалов внутри фотоэлемента при попадании на него солнечного света.

Панели различаются по структуре (поликристаллические, монокристаллические, с напылением кремния), габаритным размерам и мощности.

Путем применения термоэлектрических генераторов.

  • Термоэлектрический генератор – это техническое устройство, позволяющее получать электрическую энергию из тепловой энергии. Принцип действия основан на преобразовании энергии получаемой из-за разности температур на разных частях элементов конструкции (термоэлектродвижущая сила).

Преобразование в тепловую энергию

Путем использования коллекторов различных типов и конструкций.

  • Вакуумные коллекторы — трубчатого вида и в виде плоских коллекторов.

Принцип действия — под воздействием солнечных лучей, нагревается специальная жидкость, которая при достижении определённых параметров, начинает испаряться, после чего пар передает свою энергию теплоносителю. Отдав тепловую энергию пар конденсируется и процесс повторяется.

  • Плоские коллекторы – представляют из себя каркас с теплоизоляцией и абсорбер покрытые стеклом, с патрубками для входа и выхода теплоносителя.

Принцип действия — потоки солнечного света попадают на абсорбер и нагревают его, тепло с абсорбера переходит теплоносителю.
Путем использования гелиотермальных установок.
Принцип действия основан на нагревании поверхности способной поглощать солнечные лучи. Солнечные лучи фокусируются и посредством устройства линз концентрируются, после чего направляются на принимающее устройство, где энергия солнца передается для накопления или передачи потребителю посредством теплоносителя.

Распространение в России

Солнечная энергетика получает все более широкое распространение в разных странах и на разных континентах. Россия не является исключением из этой тенденции. Причиной более широкого распространения в последние годы стало:

  • Развитие новых технологий, позволившее снизить стоимость оборудования;
  • Желание людей иметь независимый источник энергии;
  • Чистота производства получаемой энергии («зеленая энергетика»);
  • Возобновляемый источник энергии.

Потенциалом для развития солнечной энергетики обладают южные районы нашей страны – республики Кавказа, Краснодарский и Ставропольский край, южные районы Сибири и Дальнего Востока.
Районы различаются по инсоляции в течение суток и времени года, так для разных регионов поток солнечной радиации, в летний период, составляет:

По состоянию на начало 2017 года мощность работающих солнечных электростанций на территории России составляет 0,03% от мощности электростанции энергетической системы нашей страны. В цифрах – это составляет 75,2 МВт.

Солнечные электростанции работают в

  • Оренбургской области:
    «Сакмарская им. А. А. Влазнева», установленной мощностью 25 МВт;
    «Переволоцкая», установленной мощностью 5,0 МВт.
  • Республике Башкортостан:
    «Бурибаевская», установленной мощностью 20,0 МВт;
    «Бугульчанская», установленной мощностью 15,0 МВт.
  • Республике Алтай:
    «Кош-Агачская», установленной мощностью 10,0 МВт;
    «Усть-Канская», установленной мощностью 5,0 МВт.
  • Республике Хакасия:
    «Абаканская», установленной мощностью 5,2 МВт.
  • Белгородской области:
    «АльтЭнерго», установленной мощностью 0,1 МВт.
  • В Республике Крым, независимо от Единой энергетической системы страны, работает 13 солнечных электрических станций, общей мощностью 289,5 МВт.
  • Также, вне системы работает станция в Республике Саха—Якутия (1,0 МВт) и в Забайкальском крае (0,12 МВт).

В стадии разработки проекта и строительства находятся электростанции

  • В Алтайском крае, 2 станции, общей проектируемой мощностью 20,0 МВт, запуск в работу планируется в 2019 году.
  • В Астраханской области, 6 станций, общей проектируемой мощностью 90,0 МВт, запуск в работу планируется в 2017 году.
  • В Волгоградской области, 6 станций, общей проектируемой мощностью 100,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Забайкальском крае, 3 станции, общей проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Иркутской области, 1 станция, проектируемой мощностью 15,0 МВт, запуск в работу планируется в 2018 году.
  • В Липецкой области, 3 станции, общей проектируемой мощностью 45,0 МВт, запуск в работу планируется в 2017 году.
  • В Омской области, 2 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Оренбургской области, 7 станция, проектированной мощностью 260,0 МВт, запуск в работу планируется в 2017-2019 годах.
  • В Республике Башкортостан, 3 станции, проектируемой мощностью 29,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Бурятия, 5 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Республике Дагестан, 2 станции, проектируемой мощностью 10,0 МВт, запуск в работу планируется в 2017 году.
  • В Республике Калмыкия, 4 станции, проектируемой мощностью 70,0 МВт, запуск в работу планируется в 2017 и 2019 году.
  • В Самарской области, 1 станция, проектируемой мощностью 75,0 МВт, запуск в работу планируется в 2018 году.
  • В Саратовской области, 3 станции, проектируемой мощностью 40,0 МВт, запуск в работу планируется в 2017 и 2018 году.
  • В Ставропольском крае, 4 станции, проектируемой мощностью 115,0 МВт, запуск в работу планируется в 2017-2019 годы.
  • В Челябинской области, 4 станции, проектируемой мощностью 60,0 МВт, запуск в работу планируется в 2017 и 2018 году.
Читайте также:
Эффект Доплера формула, исследование и автор физического явления, суть теории, применение закона на практике, примеры задач

Общая проектируемая мощность солнечных электрических станций, находящихся в стадии разработки и строительства, составляет – 1079,0 МВт.
Термоэлектрические генераторы, гелиоколлекторы и гелиотермальные установки также широко применяются на промышленных предприятиях и в повседневной жизни. Вариант и способ использования выбирает каждый для себя сам.

Количество технических устройств, использующих энергию солнца для выработки электрической и тепловой энергий, а также количество строящихся солнечных электрических станций, их мощность, говорят сами за себя — в России альтернативным источникам энергии быть и развиваться.

Пригодна ли для обычного дома

  • Для бытового использования гелиоэнергетика — перспективный вид энергетики.
  • В качестве источника электрической энергии, для жилых домов, используют солнечные электрические станции, которые выпускают промышленные предприятия в России и за ее пределами. Установки выпускаются различной мощности и комплектации.
  • Использование теплового насоса — обеспечит жилой дом горячей водой, подогреет воду в бассейне, нагреет теплоноситель в системе отопления или воздух внутри помещений.
  • Гелиоколлекторы — можно использовать в системах отопления домов и горячего водоснабжения. Более эффективны, в этом случае, вакуумные трубчатые коллекторы.

Плюсы и минусы

К достоинствам солнечной энергетики относятся:

  • Экологическая безопасность установок;
  • Неисчерпаемость источника энергии в далекой перспективе;
  • Низкая себестоимость получаемой энергии;
  • Доступность производства энергии;
  • Хорошие перспективы развития отрасли, обусловленные развитием технологий и производством новых материалов с улучшенными характеристиками.

Недостатками являются:

  • Прямая зависимость количества вырабатываемой энергии от погодные условия, времени суток и времени года;
  • Сезонность работы, которую определяет географическое расположение;
  • Низкий КПД;
  • Высокая стоимость оборудования.

Перспективы

Перспективы развития данной отрасли энергетики обусловлены положительными и отрицательными свойствами присущим гелиоустановкам. Если с достоинствами все понятно, то с недостатками предстоит работать инженерам и разработчикам оборудования и материалов.

Факторами, вызывающими здоровый оптимизм, по развитию альтернативных источников энергии, являются:

  1. Запасы традиционных источников энергии постоянно сокращаются, что обуславливает рост их стоимости.
  2. Технический прогресс постоянно идет, появляются новые материалы и технологии, и что, в свою очередь, приводит к уменьшению стоимости оборудования и повышению КПД установок.
  3. Политика государства в энергетической области направлена на развитие альтернативной энергетики, о чем были приняты постановления правительства и соответствующие программы, как то:
  • В 2009 году — «Основные направления государственной политики в сфере повышения энергетической эффективностиэлектроэнергетики на основе использования возобновляемых источников энергии на период до 2020 года».
  • Помощь государства при реализации программы Международной финансовой корпорации (IFC) по развитию возобновляемых источников энергии.
  • Создание, на законодательном уровне, экономических рычагов, способствующих развитию «зеленой» энергетики, выражающихся в установлении льготных тарифов, финансовой помощи при строительстве, налоговые льготы и компенсация части кредитных затрат на строительство.

Россия – большая страна, поэтому для успешного развития всех отраслей промышленности и комфортного проживания людей во всех регионах, необходимо наличие запасов различных видов энергии. В связи с этим альтернативные источники все более прочно входят в общую систему энергоснабжения страны, обеспечивая самые отдаленные города и поселки источниками электричества и тепла.

Способы и особенности использования энергии солнца на земле

Солнце является одним из возобновляемых альтернативных источников энергии. На сегодняшний день альтернативные источники тепла широко используют в аграрном хозяйстве и в бытовых нуждах населения.

  • Сферы использования солнечной энергии
  • Особенности применения
  • Пассивные системы
  • Активные системы
  • Солнечные фотоэлементы
  • Солнечные коллекторы
  • Преимущества солнечных установок

Использование энергии солнца на земле играет важную роль в жизни человека. При помощи своего тепла солнце, как источник энергии, нагревает всю поверхность нашей планеты. Благодаря его тепловой мощности дуют ветра, нагреваются моря, реки, озера, существует все живое на земле.

Возобновляемые источники тепла, люди начали использовать еще много лет назад, когда современных технологий еще не существовало. Солнце является самым доступным на сегодняшний день поставщиком тепловой энергии на земле.

Сферы использования солнечной энергии

С каждым годом применение энергии солнца набирает все больше популярности. Еще несколько лет назад ее применяли в целях подогрева воды для дачных домов, летних душей, а сейчас возобновляемые источники тепла применяют для выработки электричества и горячего водоснабжения жилых домов и промышленных объектов.

На сегодняшний день возобновляемые источники тепла используют в следующих сферах:

  • в аграрном хозяйстве, в целях электрообеспечения и отопления парников, ангаров и других построек;
  • для электроснабжения спортивных объектов и медицинских учреждений;
  • в сфере авиационной и космической промышленности;
  • в освещении улиц, парков, а также других городских объектов;
  • для электрификации населенных пунктов;
  • для отопления, электроснабжения и горячего водоснабжения жилых домов;
  • для бытовых нужд.
Читайте также:
Импульс силы определение, формула и формулировка закона сохранения

к содержанию ↑

Особенности применения

Свет, который излучает солнце на земле, при помощи пассивных, а также активных систем превращается в тепловую энергию. К пассивным системам относятся здания, при строительстве которых применяют такие стройматериалы, которые наиболее эффективно поглощают энергию солнечной радиации. В свою очередь, к активным системам относятся коллекторы, преобразовывающие солнечную радиацию в энергию, а также фотоэлементы, конвертирующие ее в электричество. Рассмотрим подробнее как правильно использовать возобновляемые источники тепла.

Пассивные системы

К таким системам относят солнечные здания. Это здания, построенные с учетом всех особенностей местной климатической зоны. Для их возведения применяют такие материалы, которые дают возможность максимально использовать всю тепловую энергию для обогрева, охлаждения, освещения жилых и промышленных помещений. К ним относят следующие строительные технологии и материалы: изоляцию, деревянные полы, поглощающие свет поверхности, а также ориентацию здания на юг.

Такие солнечные системы позволяют осуществить максимальное использование солнечной энергии, к тому же они быстро окупают расходы на их возведение за счет снижения энергозатрат. Они являются экологически чистыми, а также позволяют создать энергетическую независимость. Именно из-за этого использование таких технологий очень перспективно.

Активные системы

К этой группе относят коллекторы, аккумуляторы, насосы, трубопроводы для теплоснабжения и горячего водоснабжения в быту. Первые устанавливают непосредственно на крышах домов, а остальные располагают в подвальных помещениях, чтоб использовать их для горячего водоснабжения и теплоснабжения.

Солнечные фотоэлементы

Чтоб более эффективно реализовывать всю солнечную энергию применяют такие источники энергии солнца, как фотоэлементы, или как их еще называют — солнечные элементы. На своей поверхности они имеют полупроводники, которые, при воздействии на них лучей солнца, начинают двигаться, и тем самым вырабатывают электроток. Такой принцип выработки тока не содержит никаких химических реакций, что позволяет фотоэлементам работать достаточно долго.

Такие фотоэлектрические преобразователи как источники энергии солнца легко использовать, так как они имеют небольшой вес, просты в обслуживании, а также являются очень эффективными в использовании солнечной мощности.

На сегодняшний день солнечные батареи, как источник энергии солнца на земле, используют для выработки горячего водоснабжения, отопления и для производства электричества в теплых странах, таких как Турция, Египет и страны Азии. В нашем регионе солнце источник энергии применяют для снабжения электричеством автономных систем электропитания, маломощной электроники и приводов самолетов.

Солнечные коллекторы

Использование солнечной энергии коллекторами заключается в том, что они преобразовывают радиацию в тепло. Их разделяют на следующие основные группы:

  • Плоские солнечные коллекторы. Являются самыми распространенными. Их удобно использовать для бытовых отопительных нужд, а также при подогреве воды для горячего водоснабжения;
  • Вакуумные коллекторы. Их используют для бытовых нужд, когда необходима вода высокой температуры. Они состоят из нескольких стеклянных трубок, проходя через которые лучи солнца нагревают их, а они, в свою очередь, отдают тепло воде;
  • Воздушные солнечные коллекторы. Их используют для воздушного отопления, рекуперации воздушных масс и для осушительных установок;
  • Интегрированные коллекторы. Самые простые модели. Их используют для предварительного подогрева воды, например, для газовых котлов. В быту подогретая вода собирается в специальном баке — накопители и далее используется для различных нужд.

Использование энергии солнца коллекторами осуществляется путем накапливания ее в так называемых модулях. Они устанавливаются на крыше зданий и состоят из стеклянных трубок и пластин, которые, в целях поглощения большего объема солнечного света, окрашивают в черный цвет.

Солнечные коллекторы используют для подогрева воды для горячего водоснабжения и отопления жилых домов.

Преимущества солнечных установок

  • они полностью бесплатны и неисчерпаемы;
  • имеют полную безопасность в использовании;
  • автономны;
  • экономичны, так как расход средств осуществляется только лишь на приобретение оборудования для установок;
  • их использование гарантирует отсутствие скачков напряжения, а также стабильность в электроснабжении;
  • долговечны;
  • просты в использовании и в обслуживании.

Использование солнечной энергии при помощи таких установок с каждым годом набирает популярности. Солнечные батареи дают возможность сэкономить не малые деньги на отоплении и горячем водоснабжении, к тому же они являются экологически чистыми и не наносят урон здоровью человека.

Солнечная энергия и ее использование

Рубрика: Технические науки

Дата публикации: 30.03.2015 2015-03-30

Статья просмотрена: 7979 раз

Библиографическое описание:

Аль-Ани, омар Абед Альнасер. Солнечная энергия и ее использование / омар Абед Альнасер Аль-Ани. — Текст : непосредственный // Молодой ученый. — 2015. — № 7 (87). — С. 80-82. — URL: https://moluch.ru/archive/87/16842/ (дата обращения: 17.11.2021).

Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце — это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н. э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Читайте также:
Кот Шредингера - читать онлайн об эксперименте ученого Эрвина

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной [1].

Использование солнечной энергии

Солнечная радиация может быть преобразована в полезную энергию, используя так называемые активные и пассивные солнечные системы. Пассивные системы получаются с помощью проектирования зданий и подбора строительных материалов таким образом, чтобы максимально использовать энергию Солнца. К активным солнечным системам относятся солнечные коллекторы. Также в настоящее время ведутся разработки фотоэлектрических систем — это системы, которые преобразовывают солнечную радиацию непосредственно в электричество.

Энергия — это движущая сила любого производства. Тот факт, что в распоряжении человека оказалось большое количество относительно дешевой энергии, в значительной степени способствовало индустриализации и развитию общества.

Пассивное использование солнечной энергии

Пассивные солнечные здания — это те, проект которых разработан с максимальным учетом местных климатических условий, и где применяются соответствующие технологии и материалы для обогрева, охлаждения и освещения здания за счет энергии Солнца. К ним относятся традиционные строительные технологии и материалы, такие как изоляция, массивные полы, обращенные к югу окна. Такие жилые помещения могут быть построены в некоторых случаях без дополнительных затрат. В других случаях возникшие при строительстве дополнительные расходы могут быть скомпенсированы снижением энергозатрат. Пассивные солнечные здания являются экологически чистыми, они способствуют созданию энергетической независимости и энергетически сбалансированному будущему [2].

1 Активное использование солнечной энергии

Активное использование солнечной энергии осуществляется с помощью солнечных коллекторов и солнечных систем.

1.1 Солнечные коллекторы и их виды

В основе многих солнечных энергетических систем лежит применение солнечных коллекторов. Коллектор поглощает световую энергию Солнца и преобразует ее в тепло, которое передается теплоносителю (жидкости или воздуху) и затем используется для обогрева зданий, нагрева воды, производства электричества, сушки сельскохозяйственной продукции или приготовления пищи. Солнечные коллекторы могут применяться практически во всех процессах, использующих тепло.

Технология изготовления солнечных коллекторов достигла практически современного уровня в 1908 году, когда Вильям Бейли из американской «Carnegie Steel Company» изобрел коллектор с теплоизолированным корпусом и медными трубками. Этот коллектор весьма походил на современную термосифонную систему. К концу первой мировой войны Бейли продал 4 000 таких коллекторов, а бизнесмен из Флориды, купивший у него патент, к 1941 году продал почти 60 000 коллекторов.

Типичный солнечный коллектор накапливает солнечную энергию в установленных на крыше здания модулях трубок и металлических пластин, окрашенных в черный цвет для максимального поглощения радиации. Они заключены в стеклянный или пластмассовый корпус и наклонены к югу, чтобы улавливать максимум солнечного света. Таким образом, коллектор представляет собой миниатюрную теплицу, накапливающую тепло под стеклянной панелью. Поскольку солнечная радиация распределена по поверхности, коллектор должен иметь большую площадь.

Существуют солнечные коллекторы различных размеров и конструкций в зависимости от их применения. Они могут обеспечивать хозяйство горячей водой для стирки, мытья и приготовления пищи, либо использоваться для предварительного нагрева воды для существующих водонагревателей. В настоящее время рынок предлагает множество различных моделей коллекторов.

Простейший вид солнечного коллектора — это «емкостной» или «термосифонный коллектор», получивший это название потому, что коллектор одновременно является и теплоаккумулирующим баком, в котором нагревается и хранится «одноразовая» порция воды. Такие коллекторы используются для предварительного нагрева воды, которая затем нагревается до нужной температуры в традиционных установках, например, в газовых колонках. В условиях домашнего хозяйства предварительно подогретая вода поступает в бак-накопитель. Благодаря этому снижается потребление энергии на последующий ее нагрев. Такой коллектор — недорогая альтернатива активной солнечной водонагревательной системе, не использующая движущихся частей (насосов), требующая минимального техобслуживания, с нулевыми эксплуатационными расходами.

Плоские коллекторы — самый распространенный вид солнечных коллекторов, используемых в бытовых водонагревательных и отопительных системах. Обычно этот коллектор представляет собой теплоизолированный металлический ящик со стеклянной либо пластмассовой крышкой, в который помещена окрашенная в черный цвет пластина абсорбера (поглотителя). Остекление может быть прозрачным либо матовым. В плоских коллекторах обычно используется матовое, пропускающее только свет, стекло с низким содержанием железа (оно пропускает значительную часть поступающего на коллектор солнечного света). Солнечный свет попадает на тепловоспринимающую пластину, а благодаря остеклению снижаются потери тепла. Дно и боковые стенки коллектора покрывают теплоизолирующим материалом, что еще больше сокращает тепловые потери [3].

1.2 Солнечные системы

Солнечные системы горячего водоснабжения

Горячее водоснабжение — наиболее распространенный вид прямого применения солнечной энергии. Типичная установка состоит из одного или более коллекторов, в которых жидкость нагревается на солнце, а также бака для хранения горячей воды, нагретой посредством жидкости-теплоносителя. Даже в регионах с относительно небольшим количеством солнечной радиации, например в Северной Европе, солнечная система может обеспечить 50–70 % потребности в горячей воде. Больше получить невозможно, разве что с помощью сезонного регулирования. В Южной Европе солнечный коллектор может обеспечить 70–90 % потребляемой горячей воды. Нагрев воды с помощью энергии Солнца — очень практичный и экономный способ. В то время, как фотоэлектрические системы достигают эффективности 10–15 %, тепловые солнечные системы показывают КПД 50–90 %. В сочетании с деревосжигающими печами бытовую потребность в горячей воде можно удовлетворять практически круглый год без применения ископаемых видов топлива.

Термосифонные солнечные системы

Термосифонными называются солнечные водонагревательные системы с естественной циркуляцией (конвекцией) теплоносителя, которые используются в условиях теплой зимы (при отсутствии морозов). В целом это не самые эффективные из солнечных энергосистем, но они имеют много преимуществ с точки зрения строительства жилья. Термосифонная циркуляция теплоносителя происходит благодаря изменению плотности воды с изменением ее температуры. Термосифонная система делится на три основные части:

Читайте также:
Консервативные и неконсервативные силы: определение и основные формулы

– плоский коллектор (абсорбер);

– Бак-накопитель для горячей воды (бойлер).

Когда вода в коллекторе (обычно в плоском) нагревается, она поднимается по стояку и поступает в бак-накопитель; на ее место в коллектор со дна бака-накопителя поступает холодная вода. Поэтому необходимо располагать коллектор ниже бака-накопителя и утеплять соединительные трубы [4].

1.3 Солнечные тепловые электростанции

В дополнение к прямому использованию солнечного тепла, в регионах с высоким уровнем солнечной радиации ее можно использовать для получения пара, который вращает турбину и вырабатывает электроэнергию. Производство солнечной тепловой электроэнергии в крупных масштабах достаточно конкурентоспособно. Промышленное применение этой технологии берет свое начало в 1980-х; с тех пор эта отрасль быстро развивалась. В настоящее время энергокомпаниями США уже установлено более 400 мегаватт солнечных тепловых электростанций, которые обеспечивают электричеством 350 000 человек и замещают эквивалент 2,3 млн. баррелей нефти в год. Девять электростанций, расположенных в пустыне Мохаве (в американском штате Калифорния) имеют 354 МВт установленной мощности и накопили 100 лет опыта промышленной эксплуатации. Эта технология является настолько развитой, что, по официальным сведениям, может соперничать с традиционными электрогенерирующими технологиями во многих районах США. В других регионах мира также скоро должны быть начаты проекты по использованию солнечного тепла для выработки электроэнергии. Индия, Египет, Марокко и Мексика разрабатывают соответствующие программы, гранты для их финансирования предоставляет Глобальная программа защиты окружающей среды (GEF). В Греции, Испании и США новые проекты разрабатываются независимыми производителями электроэнергии.

Большие зеркала — с точечным либо линейным фокусом — концентрируют солнечные лучи до такой степени, что вода превращается в пар, выделяя при этом достаточно энергии для того, чтобы вращать турбину. Фирма «Luz Corp». установила огромные поля таких зеркал в калифорнийской пустыне. Они производят 354 МВт электроэнергии. Эти системы могут превращать солнечную энергию в электричество с КПД около 15 %.

Существуют следующие виды солнечных концентраторов:

1. Солнечные параболические концентраторы

2. Солнечная установка тарельчатого типа

3. Солнечные электростанции башенного типа с центральным приемником [5].

В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказываться от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем.

1. Поиски жизни в Солнечной системе: Перевод с английского. М.: Мир, 1998 г.

2. Жуков Г. Ф. Общая теория энергии.//М: 1995., с. 11–25

3. Видяпин В. И., Журавлева Г. П. Физика. Общая теория.//М: 2005,с. 166–174

4. Дагаев М. М. Астрофизика.//М:2007.

5. Тимошкин С. Е. Солнечная энергетика и солнечные батареи. М., 2009.

Баллистическое движение определение, история возникновения направления

Данная статья является реферативным изложением основной работы. Полный текст научной работы, приложения, иллюстрации и иные дополнительные материалы доступны на сайте III Международного конкурса научно-исследовательских и творческих работ учащихся «Старт в науке» по ссылке: https://www.school-science.ru/0317/11/28648.

Актуальность. В многочисленных войнах на протяжении всей истории человечества, враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья и стрелы, а затем ядра, пули, снаряды и бомбы. Успех во многом определялся точностью попадания в цель. Однако навыка воина, разрешающей способности его глаза было недостаточно для точного попадания в цель в артиллерийской дуэли первым. Желание побеждать стимулировало появление баллистики, возникновение которой относится к 16 веку.

Довольно часто приходится иметь дело с движением тел, получивших начальную скорость не параллельно силе тяжести, а под некоторым углом к ней или к горизонту. О таком теле говорят, что оно брошено под углом к горизонту. Когда, например, спортсмен толкает ядро, метает диск или копьё, он сообщает этим предметам именно такую начальную скорость. При артиллерийской стрельбе стволам орудий придается некоторый угол возвышения, так что вылетевший снаряд тоже получает начальную скорость, направленную под углом к горизонту.

Пули, снаряды и бомбы, теннисный и футбольный мячи, и ядро легкоатлета, при полёте движутся по баллистической траектории. На уроках физкультуры мы сталкиваемся с баллистическим движением: при метании спортивных снарядов, при игре в баскетбол, футбол, волейбол, бадминтон, прыжках в длину и высоту и т.д.

Поэтому я решил более подробно изучить теорию баллистического движения, выяснить, какие параметры баллистического движения необходимо знать, чтобы увеличить точность попадания в цель.

Цель работы. Изучение баллистического движения на уроках физики у нас вызвало большой интерес. Но к сожалению эта тема в учебнике нам дана поверхностно, и мы в серьёз решили заинтересоваться ей. Мы хотим рассказать про баллистику как науку, показать баллистическое движение в практической части.

Читайте также:
Звуковые волны определение, виды, основные свойства и характеристики

Задачи: изучить баллистическое движение; подтвердить теорию на основе эксперимента; выяснить какое значение имеет баллистика в жизни человека, изготовить модели.

Гипотеза исследования. Баллистика – раздел механики, изучающий движение тел в поле тяжести Земли. Пули, снаряды, мячи все двигаются по баллистическим траекториям.

Каким же образом при движении пули, снаряда, мяча, при прыжке с трамплина можно точно попасть в цель.

В ходе работы использовались следующие методы исследования:

• Теоретические (изучение, анализ, обобщение литературы).

• Эмпирические (наблюдения, измерения).

• Практический (эксперимент, изготовление прибора).

• Интерпретационные (количественная и качественная обработка результатов).

Практическая значимость: Изучение баллистического движения имеет большое практическое значение:

• в спорте: для вратаря, выбивающего мяч от ворот, при метании гранаты, прыжки в высоту и длину, прыжки с трамплина;

• для пожарного направляющего струю воды на крышу дома;

• для военных:при запуске баллистических ракет, мин, снарядов, пуль.

Используя законы кинематики, установленные Галилео Галилеем можно определить дальность и высоту полёта, время движения и угол наклона к горизонту.

Баллистика (от греч. “ballo” – бросать, метать) – наука о движении тел, брошенных в пространстве, основанная на математике и физике. Она занимается, главным образом, исследованием движения снарядов, выпущенных из огнестрельного оружия, ракетных снарядов и баллистических ракет.

История возникновения баллистики

В многочисленных войнах на протяжении всей истории человечества враждующие стороны, доказывая своё превосходство, использовали сначала камни, копья , и стрелы, а затем ядра, пули, снаряды, и бомбы. Успех сражения во многом определялся точностью попадания в цель. При этом точный бросок камня, поражение противника летящим копьём или стрелой фиксировались воином визуально. Это позволяло при соответствующей тренировке повторять свой успех в следующем сражении.

Значительно возросшая с развитием техники скорость и дальность полёта снарядов и пуль сделали возможным дистанционные сражения. Однако навыка воина, разрешающей способности его глаза было недостаточно для точного попадания в цель. Поэтому возникла необходимость в создании науки, которая занималась бы изучением движения снарядов, копий и т.п. Мерсенн (французский математик,физик) в 1644 г. предложил назвать науку о движении снаряда – баллистикой.

Основные разделы баллистики: внутренняя баллистика и внешняя баллистика. Внешняя баллистика изучает движение снарядов, мин, пуль, неуправляемых ракет и др. после прекращения их силового взаимодействия со стволом оружия (пусковой установкой), а также факторы, влияющие на это движение. Основные разделы внешней баллистики: изучение сил и моментов, действующих на снаряд в полёте; изучение движения центра масс снаряда для расчета элементов траектории, а также движение снаряда относительно центра масс с целью определения его устойчивости и характеристик рассеивания. Разделами внешней баллистики являются также теория поправок, разработка методов получения данных для составления таблиц стрельбы и внешне баллистическое проектирование. Движение снарядов в особых случаях изучается специальными разделами внешней баллистики: авиационной баллистикой, подводной баллистикой и др.

Внутренняя баллистика изучает движение снарядов, мин, пуль и др. в канале ствола оружия под действием пороховых газов, а также другие процессы, происходящие при выстреле в канале или камере пороховой ракеты. Основные разделы внутренней баллистики: пиростатика, изучающая закономерности горения пороха и газообразования в постоянном объёме; пиродинамика, исследующая процессы в канале ствола при выстреле и устанавливающая связь между ними, конструктивными характеристиками канала ствола и условиями заряжания; баллистическое проектирование орудий, ракет, стрелкового оружия.

Баллистика – прежде всего военно-техническая наука, применяемая в проектировании орудий, ракетных пусковых установок и бомбардировщиков. На базе баллистических расчетов создаются авиабомбы, артиллерийские и ракетные снаряды. Не менее важную роль играет баллистика и в таких отраслях знаний, как проектирование космических кораблей и криминалистика. Научные основы баллистики были заложены в XVI веке.

Первыми объектами, которые создавались на основе строгих законов баллистики, были осадные метательные машины. Они были известны еще с античных времен и широко применялись вплоть до позднего средневековья (до изобретения пороха и огнестрельного оружия). Одна из таких машин – баллиста – была способна метать камни, бревна и другие предметы массой до 100 кг на расстояние до 400 м (а тяжелые стрелы даже на 1 км). По такому же принципу действовали арбалеты, катапульты, онагры (рис. 2) и требушет (рис. 1).

Позднее их вытеснила с поля боя артиллерия: пушки, минометы и гаубицы.

К началу ХVII века относятся работы великого учёного Галилея (1564–1642 г.) В 1638 г. он предположил, что траектория снаряда является параболой. С этого времени расчёты траекторий производились по формулам параболической теории.

Как самостоятельная, определённая область науки, баллистика получила широкое развитие с середины XIX века. Баллистика многим обязана трудам великих русских математиков Н.И. Лобачевского, П.Л. Чебышева, М.В. Остроградского, замечательным работам воспитанников Михайловской артиллерийской академии А.А. Фадеева, Н.В. Майевского, Н.А. Забудского, В.М. Трофимова, Н.Ф. Дроздоваи др.

До начала ХIХ века баллистикой занимались в различных странах лишь отдельные учёные. С созданием в России в 1820 г. Михайловского артиллерийского училища, преобразованного в 1855 г. в Михайловскую артиллерийскую академию, было положено начало русской артиллерийской школе.

В ХХ веке перед внешней баллистикой возникли новые задачи:

• составление точных баллистических таблиц, содержащих информацию о поправках прицела в соответствии с дистанциями до цели.

В настоящее время применение баллистики в боевых действиях предусматривает расположение системы оружия в таком месте, которое позволяло бы быстро и эффективно поразить намеченную цель с минимальным риском для обслуживающего персонала.

Доставка ракеты или снаряда к цели обычно разделяется на два этапа. На первом, тактическом, этапе выбирается боевая позиция ствольного оружия и ракет наземного базирования либо положение носителя ракет воздушного базирования. Цель должна находиться в пределах радиуса доставки боезаряда. На этапе стрельбы производится прицеливание и осуществляется стрельба. Для этого необходимо определить точные координаты цели относительно оружия – азимут, возвышение и дальность, а в случае движущейся цели – и ее будущие координаты с учетом времени полета снаряда.Перед стрельбой должны вноситься поправки на изменения начальной скорости, связанные с износом канала ствола, температурой пороха, отклонениями массы снаряда и баллистических коэффициентов, а также поправки на постоянно меняющиеся погодные условия и связанные с ними изменения плотности атмосферы, скорости и направления ветра.

Читайте также:
Баллистическое движение определение, история возникновения направления

С увеличением сложности и расширением круга задач современной баллистики появились новые технические средства, без которых возможности решения нынешних и будущих баллистических задач были бы сильно ограничены.

Движение тела, брошенного под углом к горизонту

Довольно часто приходится иметь дело с движением тел, получивших начальную скорость не параллельно силе тяжести, а под некоторым углом к ней (или к горизонту). О таком теле говорят, что оно брошено под углом к горизонту. Когда, например, спортсмен толкает ядро, метает диск или копьё, он сообщает этим предметам именно такую начальную скорость. При артиллерийской стрельбе стволам орудий придается некоторый угол возвышения, так что вылетевший снаряд тоже получает начальную скорость, направленную под углом к горизонту.

На снаряд, вылетевший из ствола с определенной скоростью, в полете действуют две основные силы: сила тяжести и сила сопротивления воздуха. Действие силы тяжести направлено вниз, оно заставляет пулю непрерывно снижаться. Действие силы сопротивления воздуха направлено навстречу движению пули, оно заставляет пулю непрерывно снижать скорость полета. Все это приводит к отклонению траектории вниз.

Будем считать, что силой сопротивления воздуха можно пренебречь. Как в этом случае движется тело?

На рис. 3 показан стробоскопический снимок шарика, брошенного под углом 60° к горизонту. Соединив последовательные положения шарика плавной линией, получим траекторию движения шарика. Это кривая называется параболой. О том, что тело, брошенное под углом к горизонту, движется по параболе, знал ещё Галилей. И опять только законы движения Ньютона и закон всемирного тяготения дают этому объяснение.

Пусть из некоторой точки с начальной скоростью , направленной под углом ? к горизонту, брошено тело. Примем за начало отсчёта точку, из которой тело брошено. Ось X направим горизонтально, а ось Y – вертикально (рис. 4).

За начало отсчёта времени примем момент времени, когда тело было брошено. Из рисунка видно, что тело совершает движение одновременно вдоль оси х и оси у.

Рассмотрим движение тела вдоль оси х. Проекция начальной скорости на ось х равна

.

Так как на тело действует только сила тяжести, направленная по вертикали вниз, то тело движется с ускорением, которое называется ускорением свободного падения и направлено вертикально вниз. Проекция ускорение свободного падения на ось х равна нулю:

.

Следовательно, вдоль оси х тело движется равномерно, значит, проекция скорости на ось х в любой момент времени остаётся постоянной.

.

Расстояние от точки вылета тела до точки приземления называется дальностью полёта. Для расчета дальности полёта воспользуемся формулой перемещения при равномерном движении:

,

где – время полёта.

Координата х в любой момент времени t может быть вычислена по формуле координаты равномерного движения:

,

где – начальная координата.

Рассмотрим теперь движение тела вдоль оси у. Проекция начальной скорости на ось у равна

Проекция ускорения свободного падения на ось у не равна нулю:

,

поэтому движение тела вдоль оси у будет равноускоренным. Следовательно, проекция скорости на ось у в любой момент времени может быть вычислена по формуле

.

Высота подъёма тела вычисляется по формуле координаты для равноускоренного тела:

,

где – начальная высота.

Координата у в любой момент времени вычисляется аналогично:

,

где – начальная координата тела.

Для расчета максимальной высоты подъёма используют следующие формулы:

.

.

Следует помнить, что при движении тела брошенного под углом к горизонту проекция скорости на ось у изменяется и в верхней точке траектории равна нулю.

Чтобы построить траекторию, по которой движется тело, необходимо получить уравнение траектории. Для этого воспользуемся уравнениями координаты х равномерного движения и координаты у для равноускоренного движения:

;

.

Рассмотрим движение тела из начала отсчёта, т.е.

; .

и

.

Полученное значение времени t подставим в уравнение координаты y.

;

.

Найдём проекции на координатные оси (рис. 4):

ОХ:

ОY: ; .

Найденные проекции подставляем в уравнение координаты у:

.

.

По этим формулам можно рассчитать координаты точек, которые будут изображать последовательные положения тела. Плавная кривая, проведённая через эти точки, и есть расчётная траектория. Она показана на (рис. 3). Имея эту кривую, можно узнать значение одной из координат при том или ином значении другой координаты.

Полученные результаты справедливы для идеализированного случая, когда можно пренебречь сопротивлением воздуха, температурой, ветром, влажностью и давлением воздуха, силой Кориолиса. Реальное движение тел в земной атмосфере происходит по баллистической траектории, существенно отличающейся от параболической из-за наличия условий, приведённых выше (рис. 4).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: