Импульс силы определение, формула и формулировка закона сохранения

Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

Теория к заданию 3 из ЕГЭ по физике

Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

где, $<υ_1>↖<→>$ и $<υ_2>↖<→>$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

Здесь $↖<→>–↖<→>=∆p↖<→>$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

Выражение $∆p↖<→>=F↖<→>∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы. Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖<→>=F↖<→>∆t$ называется уравнением движения тела. Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_<12>$ и $F_<21>$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы $↖<→>$ и $↖<→>$. Для каждого тела можно записать уравнение $∆p↖<→>=F↖<→>∆t$. Сложив левые и правые части этих уравнений, получим:

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — $<∆p_<сист>>↖<→>$.С учетом этого равенство $<∆p_1>↖<→>+<∆p_2>↖<→>=(↖<→>+↖<→>)∆t$ можно записать:

где $F↖<→>$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Читайте также:
Уравнение теплового баланса основная формула, физический смысл и суть теплового равновесия в физике, задачи с решениями, примеры нахождения параметров теплопередачи

Закон сохранения импульса

Из уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения $<∆p_<сист>>↖<→>=F↖<→>∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_

υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_<газ>·υ_<газ>$ выброшенных газов:

Отсюда следует, что скорость ракеты

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=(>/)·υ_<газ>$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Читайте также:
Удельная теплота парообразования - обозначение, смысл

Формула Циолковского позволяет рассчитать запасы топлива, необходимые для сообщения ракете заданной скорости.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

где $F$ — сила, действующая на тело, $∆r↖<→>$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖<→>$ и $∆r↖<→>$.

Работа — величина скалярная. Если $α 0$, а если $90° А_п$, КПД всегда меньше $1$ (или $

Импульс тела, закон сохранения импульса

теория по физике законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1 и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Читайте также:
Сила тока определение, формула расчета постоянной и переменной величины

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Читайте также:
Электростатика — основные понятия и формулы раздела физики с примерами

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Читайте также:
Условия равновесия тел определение, виды, формулировка и формулы

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Импульс силы определение, формула и формулировка закона сохранения

Коды ОГЭ 1.14 — 1.15. Импульс тела – векторная физическая величина. Импульс системы тел. Закон сохранения импульса для замкнутой системы тел. Реактивное движение.

Импульс тела (количество движения) р – векторная физическая величина, численно равная произведению массы тела на его скорость: .

Единицы измерения в СИ: .
Импульс механической системы равен геометрической сумме импульсов всех тел системы. Внимание! Вектор импульса тела всегда сонаправлен с вектором скорости тела. Внимание! Вектор импульса силы всегда сонаправлен с вектором силы.

Рассмотрим второй закон Ньютона для случая равноускоренного движения:
, следовательно, .

Или сила равна отношению изменения импульса тела к промежутку времени, в течение которого эта сила действовала , или сила равна изменению импульса тела за 1 с.

Закон сохранения импульса тела: Геометрическая (векторная) сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остаётся неизменной: .

Система реальных тел может рассматриваться как замкнутая, если:

  • действие на систему внешних тел пренебрежимо мало;
  • действия на систему внешних тел скомпенсированы;
  • рассматриваются изменения, происходящие в системе в течение такого малого промежутка времени, что действие внешних тел не успевает существенно изменить состояние системы.

Если система тел не замкнута, то изменение суммарного импульса системы тел равно импульсу внешней результирующей силы: .

Примеры применения закона сохранения импульса:

  1. любые столкновения тел (биллиардных шаров, автомобилей, элементарных частиц и т. д.);
  2. движение воздушного шарика при выходе из него воздуха и другие примеры реактивного движения;
  3. разрывы тел, выстрелы и т. д.

Реактивное движение – движение тела, возникающее при отделении некоторой его части с определённой скоростью относительно тела.

Например, движение ракеты. Если представить, что всё топливо вытекает одновременно, то согласно закону сохранения импульса в проекции на координатную ось: Mʋ – mu = 0 или . Здесь m – масса топлива, М – масса ракеты, ʋ – скорость, приобретаемая ракетой, u – скорость истечения топлива.

Конспект урока «Импульс тела. Закон сохранения импульса».

Импульс силы определение, формула и формулировка закона сохранения

Зная связь ускорения тела со скоростью его движения и предполагая, что масса тела не изменяется с течением времени, выражение можно переписать несколько в ином виде:

Читайте также:
Равноускоренное движение - определение и график, путь, примеры

Полученное выражение показывает, что результат действия силы можно понимать и несколько иначе, чем мы делали это раньше: действие силы на тело приводит к изменению некоторой величины, характеризующей это тело, которая равна произведению массы тела на скорость его движения . Эту величину называют импульсом тела :

Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

Слово “импульс” в переводе с латинского означает “толчок”. В некоторых книгах вместо термина “импульс” используется термин “количество движения”.

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем. Ещё в первой половине XVII века понятие импульса введено Рене Декартом . Так как физическое понятие массы в то время отсутствовало, он определил импульс как произведение «величины тела на скорость его движения». Позже такое определение было уточнено Исааком Ньютоном . Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе».

Поскольку , то за единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скорость 1 м/с. Соответственно единицей импульса тела в СИ является 1 кг * м/c.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса . Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t , то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение.

При стрельбе из орудия возникает отдача – снаряд движется вперед, а пушка– откатывается назад. Снаряд и пушка – два взаимодействующих тела. Скорость, которую приобретает пушка при отдаче, зависит только от скорости снаряда и отношения масс. Если скорости пушки и снаряда обозначить через и а их массы через M и m , то на основании закона сохранения импульса можно записать в проекциях на ось OX:

Читайте также:
Электрическое напряжение определение физической величины, основные виды

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю. После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара – 30 м/с. Сила, с которой нога действовала на мяч – 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

Изменение импульса тела:

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов.

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Закон сохранения импульса. Реактивное движение

Закон сохранения импульса

Закон сохранения импульса можно наблюдать повсюду. Он достаточно точно выполняется в реальных условиях, если пренебречь сопротивлением воздуха, силами трения и т.д. Примеры проявления этого закона:

  • стрелок ощущает отдачу при выстреле из ружья;
  • рыбак переходит с кормы на нос лодки, а лодка при этом движется в противоположную сторону;
  • шары сталкиваются на бильярдном столе.

Однако, прежде чем говорить о законе сохранении импульса, рассмотрим понятие замкнутой системы.

Замкнутая система – система тел, на которую со стороны других тел не действуют внешние силы.

Формулировка закона сохранения импульса (ЗСИ)

Векторная сумма импульсов всех тел, входящих в замкнутую систему, остается постоянной при любых взаимодействиях этих тел между собой внутри системы.

Данный закон является следствием из второго и третьего законов Ньютона. Покажем это.

Возьмем замкнутую систему из двух взаимодействующих тел. Силы F 1 → и F 2 → – это силы взаимодействия между телами. Третий закон Ньютона гласит, что F 2 → = – F 1 → . Пусть тела взаимодействуют во течение времени t . Тогда импульсы сил одинаковы по модулю и противоположны по направлению, как и сами силы.

Читайте также:
Закон преломления света формула и формулировка, физический смысл показателя преломления, принцип распространения лучей

F 2 t → = – F 1 → t .

По второму закону Ньютона:

F 1 → t = m 1 v 1 ‘ → – m 1 v 1 → ; F 2 → t = m 1 v 2 ‘ → – m 1 v 2 →

Здесь v 1 ‘ → и v 2 ‘ → – скорости тел в конце взаимодействия. Соответственно, скорости без штрихов обозначают эти величины в начальный момент взаимодействия.

Из записанного выше следует соотношение:

m 1 v 1 → + m 2 v 2 → = m 1 v 1 ‘ → + m 2 v 2 ‘ →

Это равенство – математическая форма записи закона сохранения импульса. Оно означает, что суммарный импульс системы в результате какого-то взаимодействия не изменился.

Проиллюстрируем закон сохранения импульса на примере соударения шаров разных масс. Один из шаров до удара покоился.

Как видим, после удара векторная сумма импульсов двух шаров равна первоначальному импульсу движущегося шара.

Важно! Закон сохранения выполняется и для проекций векторов на координатные оси.

Закон сохранения импульса позволяет решать задачи и находить скорости тел не зная значений действующих сил.

Рассмотрим снаряд, вылетающий из пушки.

В данном случае взаимодействующие тела – это снаряд и пушка. Сначала тела не движутся. При выстреле снаряд приобретает скорость v → и летит вперед, а пушка откатывается назад со скоростью V → . Откатывание пушки называется отдачей от выстрела.

По закону сохранения импульса в проекции на ось OX можно записать:

Реактивное движение

Реактивное движение также основано на принципе отдачи. Нагретые газы выбрасываются из сопла реактивного двигателя со скоростью u → . Пусть масса газов равна m , а масса ракеты после истечения газов – M . Рассматривая замкнутую систему “ракета-газы” и применяя к ней закон сохранения импульса, можно вычислить скорость ракеты V после истечения газов.

Формула для пушки и снаряда не применима к ракете, так как дает лишь приблизительное представление о движении ракеты, На самом деле вся масса газов выходит из сопла не сразу, а постепенно.

Рассмотрим этот процесс подробнее. Пусть масса ракеты в момент времени t равна M , а сама ракета движется со скоростью v → . В течение малого промежутка времени ∆ t из сопла ракеты выбрасывается порция газа с относительной скоростью u → . По истечении времени ∆ t ракета будет двигаться со скоростью v + ∆ v , а масса ракеты станет равной M – ∆ M .

В момент t + ∆ t импульс ракеты равен:

Импульс реактивных газов:

По закону сохранения импульса:

M v → = M – ∆ M · v → + ∆ v → + ∆ M · v → + u → .

M ∆ v → = ∆ M · u → – ∆ M · ∆ v → .

​​​​​​​

Величиной ∆ M · ∆ v → можно пренебречь, так как ∆ M намного меньше M .

Разделим последнее равенство на ∆ t и перейдем к пределу ∆ t → 0 .

M ∆ v → ∆ t = ∆ M · u → ∆ t ( ∆ t → 0 )

Здесь μ – расход топлива в единицу времени, а – μ u → – реактивная сила тяги. Направление этой силы совпадает с направлением движения ракеты.

Читайте также:
Магнитный поток определение, обозначение и единица измерения

Формула M a → = – μ u → выражает второй закон Ньютона для тела переменной массы. В скалярном виде ее можно переписать так:

Конечная скорость ракеты определяется по формуле:

Это так называемая формула Циолковского, согласно которой конечная скорость ракеты может превышать скорость истечения газов из сопла двигателя. Правда, достижение такой скорости связано с определенными сложностями. Во-первых, такими, как значительный расход топлива.

Для того, чтобы развить первую космическую скорость v = v 1 = 7 , 9 · 10 3 м с при скорости истечения газов u = 3 · 10 3 м с стартовая масса ракеты должна быть примерно в 14 раз больше конечной массы.

Современное ракетостроение развивается в направлении экономичных многоступенчатых ракет. Сброс отсеков с отработанным топливом позволяет значительно сократить массу ракеты и оптимизировать дальнейший расход топлива для ее разгона.

Законы сохранения в механике (формулы)

Сила и импульс:

Закон сохранения импульса:

Реактивная сила тяги:

Формула Циолковского:

Механическая работа:

A = Fs cos α

Мощность:

Кинетическая энергия:

Теорема о кинетической энергии:

A = Ek2 – Ek1.

Потенциальная энергия:

Закон сохранения энергии в механических процессах:

Ek1 + Ep1 = Ek2 + Ep2.

Потеря механической энергии при неупругом соударении:

Уравнение Бернулли:

Формула Торричелли:

Центр масс твердого тела:

Момент инерции твердого тела:

Кинетическая энергия вращающегося твердого тела:

Кинетическая энергия твердого тела при плоском движении:

Теорема Штейнера:

I = Ic + md 2 .

Момент импульса твердого тела:

L = Iω.

Основное уравнение динамики вращательного движения твердого тела:

Закон сохранения момента импульса:

I1ω1 = I2ω2.

Третий закон Кеплера:

Первая космическая скорость:

Вторая космическая скорость:

Магнитный поток

  • Что такое магнитный поток
    • В чем измеряется, обозначение и размерность
  • От чего зависит величина основного магнитного потока
  • Чему равен магнитный поток, как найти
    • Скорость изменения магнитного потока через контур
  • Какой формулой определяется величина магнитного потока
  • Связь магнитного потока и работы сил магнитного поля

Что такое магнитный поток

Магнитный поток — величина, характеризующая число магнитных силовых линий поля, проходящих через замкнутый контур.

Майкл Фарадей опытным путем пришел к выводу, что при любом соприкосновении проводника и магнитных линий по проводнику проходит заряд (triangle Q) . Этот заряд прямо пропорционален количеству ( triangle Ф) пересеченных линий и обратно пропорционален сопротивлению R контура. Пересечение линий вызывается или движением проводника, или изменением поля.
Позже, представляя замкнутый контур, в котором действует ЭДС индукции, Джеймс Клерк Максвелл подсчитывал количество силовых линий (triangle Ф) , пересекаемых контуром за время (triangle t) . Ф он при этом отождествлял с магнитным потоком сквозь всю поверхность.

В чем измеряется, обозначение и размерность

Единица измерения — вебер, сокращенно Вб. Он обозначается буквой Ф.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Читайте также:
Ускорение свободного падения формула, от чего зависит, в чем измеряется

Размерность — выражение, демонстрирующее связь физической величины с другими величинами данной системы, разложение ее на сомножители из других величин.

Размерность магнитного потока — (В times с = кг times м^ <2>times с^ <-2>times А^<-1>.)

От чего зависит величина основного магнитного потока

Его можно изменить следующими способами:

  • изменив площадь контура;
  • изменив угол его наклона;
  • изменив магнитное напряжение.

Чему равен магнитный поток, как найти

Магнитный поток в случае однородного магнитного поля равен произведению модуля индукции В этого поля, площади S плоской поверхности, через которую вычисляется поток, и косинуса угла (varphi) между направлением индукции В и нормали к данной поверхности.

Нормаль — перпендикуляр к плоскости контура.

Также поток можно вычислить через индуктивность, которая пропорциональна отношению полного, или суммарного потока к силе тока.

Обозначение суммарного потока — буква ( psi) . Он равен сумме потоков, проходящих через всю поверхность. И в простом случае, где рассматриваются одинаковые потоки, проходящие через одинаковые витки катушки, и в случаях, когда поверхность имеет очень сложную форму, эта пропорциональность сохраняется.

Скорость изменения магнитного потока через контур

Закон электромагнитной индукции Фарадея в интегральном виде выглядит следующим образом:

(;underset С;(overrightarrow<Е;>times;doverrightarrow l) = – frac<1>frac

int underset S;(overrightarrow times doverrightarrow).)

Интеграл в левой части уравнения — циркуляция вектора (overrightarrow<Е;>) по замкнутому контуру С, это отражает знак интеграла, записанный с кругом. В правой части — скорость изменения потока Ф, который вычисляется как интеграл по поверхности S, «натянутой» на С.

Интеграл — целое, определяемое как сумма его бесконечно малых частей.

Если считать изменение потока в замкнутом контуре равномерным, то закон Фарадея примет следующий вид:

Какой формулой определяется величина магнитного потока

Математически величину Ф описывают двумя формулами:

(Ф;=;sum_;;Btriangle S = B times S times cosvarphi. )

Связь магнитного потока и работы сил магнитного поля

Герман Гельмгольц первым связал закон Фарадея и закон сохранения энергии. Возьмем проводник с током I, находящийся внутри однородного магнитного поля, которое перпендикулярно плоскости контура, и перемещающийся в нем. Под влиянием силы Ампера F проводник перемещается на отрезок dx. Сила F производит работу dA = IdФ.

Работу источника тока можно измерить, сложив работу на джоулеву теплоту и работу по перемещению проводника внутри поля:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: