Гипербола – определение, свойства и виды, уравнение

Гипербола: определение, функция, формула, примеры построения

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

  • Определение и функция гиперболы
  • Алгоритм построения гиперболы
    • Пример 1
    • Пример 2

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k 0)
  • y = -x (при k Алгоритм построения гиперболы

Пример 1

Дана функция y = 4 /x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

” data-lang=”default” data-override=”<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">” data-merged=”[]” data-responsive-mode=”2″ data-from-history=”0″>
0,5 8 1 4 2 2 4 1 8 0,5

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

” data-lang=”default” data-override=”<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">” data-merged=”[]” data-responsive-mode=”2″ data-from-history=”0″>
-0,5 -8 -1 -4 -2 -2 -4 -1 -8 -0,5

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Что такое гипербола

О чем эта статья:

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) – 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) – (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 – 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 – (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 – 8(y^2)/20 = 1.


    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) – (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) – (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 – a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 – a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 – y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 – a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Гипербола. График функции и свойства.

    теория по математике 📈 функции

    Графиком функции у= k x . . , где k ≠ 0 число, а х – переменная, является кривая, которую называют гиперболой.

    Гипербола имеет две ветви и может располагаться в 1 и 3 координатных четвертях, либо во 2 и 4. Это зависит от знака числа k. Рассмотрим данную кривую на рисунке, где показано ее расположение в зависимости от знака k.

    Свойства гиперболы (у= k x . )

    График функции симметричен относительно начала координат (0;0). Поэтому функцию еще называют – обратная пропорциональность.

    1. Область определения – любое число, кроме нуля.
    2. Область значения – любое число, кроме нуля.
    3. Функция не имеет наибольших или наименьших значений.

    Построение графика функции

    Для построения графика функции необходимо подбирать несколько положительных и несколько отрицательных значений переменной х, затем подставлять их в заданную функцию для вычисления значений у. После этого по найденным координатам построить точки и соединить их плавной линией. Рассмотрим построение графиков на примерах.

    Построить график функции у= 10 x . . .

    Для этого построим две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число 10 на них делилось

    х 1 2 4 5 10
    у
    х –1 –2 –4 –5 –10
    у

    Теперь делим на эти числа 10, получим значения у:

    х 1 2 4 5 10
    у 10 5 2,5 2 1
    х –1 –2 –4 –5 –10
    у –10 –5 –2,5 –2 –1

    Выполняем построение точек, они будут располагаться в первой и третьей координатных четвертях, так как число k положительное.

    Теперь для построения гиперболы соединим точки плавной линией. Построить график функции у= − 5 x . . .

    Для этого построим также две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число минус 5 на них делилось. Выполняем деление и получаем значения у. При делении обращаем внимание на знаки, чтобы не допускать ошибок.

    х 1 2 5 10
    у –5 –2,5 –1 –0,5
    х –1 –2 –5 –10
    у 5 2,5 1 0,5

    Теперь отмечаем точки во 2 и 4 координатных четвертях (число k отрицательное) и соединяем их для получения ветвей гиперболы.

    Установите соответствие между графиками функций и формулами, которые их задают.

    1) y = x²

    Для решения данной задачи необходимо знать вид графиков функций, а именно:

    y = x² — парабола, в общем виде это y = ax²+bx+c, но в нашем случае b = c = 0, а а = 1

    x/2 — прямая, в общем виде график прямой имеет вид y = ax + b, в нашем случае b = 0, а = 1/2

    y = 2/x — гипербола, в общем виде график функции y = a/x + b, в данном примере b = 0, a = 2

    Парабола изображена на рисунке А, гипербола на рисунке Б, а прямая — В.

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Установите соответствие между функциями и их графиками.

    В данной ситуации можно воспользоваться двумя подходами — можно руководствоваться общими соображениями, а можно просто решить задачу подстановкой. Я рекомендую решать задачу общими соображениями, а проверять подстановкой.

    • если уравнение гиперболы положительное (то есть не стоит знак -, как во втором и третьем случае), то график функции лежит в первой и третьей координатной четверти
    • если перед уравнением гиперболы стоит знак — (как в первом случае), то график лежит во второй и четвертой четвертях

    Таким образом можно сразу определить, что первое уравнение соответствует графику под номером 2.

    Второе правило, которым я пользуюсь, звучит так:

    • чем больше число в знаменателе гиперболы (рядом с x), тем сильнее гипербола жмется к осям координатной плоскости
    • чем больше число в числителе уравнения гиперболы, тем слабее и медленнее график функции прижимается к осям

    Следовательно, функция Б слабее прижимается к осям и ей соответствует график 3, а функции В соответствует график 1, так как она сильнее прижимается к осям.

    pазбирался: Даниил Романович | обсудить разбор | оценить

    Обратная пропорциональность. Гипербола

    Сейчас мы будем говорить об обратной пропорциональности, или другими словами об обратной зависимости, как о функции.

    Мы закрепим понятие функции и научимся работать с коэффициентами и графиками.

    А еще мы разберем несколько примеров построения графика функциигиперболы.

    Обратная пропорциональность — коротко о главном

    Определение:

    Функция, описывающая обратную пропорциональность, – это функция вида ( displaystyle y=frac+b ), где ( kne 0), ( xne 0) и ( xne а)

    По-другому эту функцию называют обратной зависимостью.

    Область определения и область значений функции:

    ( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или, что то же самое, ( Dleft( y right)=mathbbbackslash left< 0 right>)

    ( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbbbackslash left< 0 right>).

    График обратной пропорциональности (зависимости) – гипербола.

    Коэффициент ( displaystyle k)

    ( displaystyle k) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).

    Знак коэффициента ( displaystyle k) влияет на то, в каких четвертях расположен график:

    если ( displaystyle k>0), то ветви гиперболы расположены в ( displaystyle I) и ( displaystyle III) четвертях;

    если ( displaystyle k

    Коэффициент ( displaystyle a)

    Если внимательно посмотреть на знаменатель, видим, что ( displaystyle a) – это такое число, которому не может равняться ( displaystyle x).

    То есть ( x=a) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции

    Коэффициент ( b)

    Число ( b) отвечает за смещение графика функции вверх на величину ( b), если ( b>0), и смещение вниз, если ( b

    Пример 2

    Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).

    Напомню, что для этого надо найти корни соответствующего квадратного уравнения: ( displaystyle <^<2>>+4-5=0).

    Я найду их устно с помощью теоремы Виета: ( displaystyle <_<1>>=-5), ( displaystyle <_<2>>=1). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».

    Итак, получаем: ( displaystyle <^<2>>+4-5=left( x+5 right)left( x-1 right)), следовательно:

    Пример 3

    Ты уже попробовал решить сам? В чем загвоздка?

    Наверняка в том, что в числителе у нас ( displaystyle 2x), а в знаменателе – просто ( displaystyle x).

    Это не беда. Нам нужно будет сократить на ( displaystyle left( x+2 right)), поэтому в числителе следует вынести ( displaystyle 2) за скобки (чтобы в скобках ( displaystyle x) получился уже без коэффициента):

    Ответ: ( displaystyle y=2-frac<5>).

    График обратной пропорциональности

    Как всегда, начнем с самого простого случая: ( displaystyle y=frac<1>).

    Таблица обратной пропорциональности (зависимости)

    ( displaystyle mathbf) ( displaystyle -3) ( displaystyle -2) ( displaystyle -1) ( displaystyle -0,5) ( displaystyle 0,5) ( displaystyle 1) ( displaystyle 2) ( displaystyle 3) ( displaystyle 4)
    ( displaystyle mathbf) ( displaystyle -frac<1><3>) ( displaystyle -frac<1><2>) ( displaystyle -1) ( displaystyle -2) ( displaystyle 2) ( displaystyle ;1) ( displaystyle frac<1><2>) ( displaystyle frac<1><3>) ( displaystyle frac<1><4>)

    Нарисуем точки на координатной плоскости:

    Теперь их надо плавно соединить, но как?

    Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.

    Это график гиперболы и выглядит он так:

    Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.

    Каждая из них стремится своими концами приблизиться к осям ( displaystyle Ox) и ( displaystyle Oy), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

    Оно и понятно: так как ( displaystyle xne 0), график не может пересекать ось ( displaystyle Oy). Но и ( displaystyle yne 0), так что график никогда не коснется и оси ( displaystyle Ox).

    Ну что же, теперь посмотрим на что влияют коэффициенты.

    На что влияют коэффициенты

    Рассмотрим такие функции:

    Ух ты, какая красота!

    Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

    Итак, на что обратим внимание в первую очередь?

    Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси ( displaystyle Ox).

    Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

    А что, если функция выглядит сложнее, например, ( displaystyle y=frac<1>+2)?

    В этом случае гипербола будет точно такой же, как обычная ( displaystyle y=frac<1>), только она немного сместится. Давай думать, куда?

    Чему теперь не может быть равен ( x)? Правильно, ( xne 1). Значит, график никогда не достигнет прямой ( x=1).

    А чему не может быть равен ( y)? Теперь ( yne 2). Значит, теперь график будет стремиться к прямой ( y=2), но никогда ее не пересечет.

    Итак, теперь прямые ( x=1) и ( y=2) выполняют ту же роль, которую выполняют координатные оси для функции ( displaystyle y=frac<1>).

    Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

    Более подробно о том, как строятся такие графики, мы выучим чуть позже.

    А теперь попробуй решить несколько примеров для закрепления.

    Примеры

    1. На рисунке изображен график функции ( displaystyle y=frac). Определите ( k).

    2. На рисунке изображен график функции ( displaystyle y=frac). Определите ( k)

    3. На рисунке изображен график функции ( displaystyle y=frac<1>). Определите ( a).

    4. На рисунке изображен график функции ( displaystyle y=frac<1>+a). Определите ( a).

    5. На рисунке приведены графики функций ( displaystyle y=frac,text< >y=frac) и ( y=frac).

    Гипербола (математика)

    Гипе́рбола (др.-греч. ὑπερβολή , от ὑπερ — «верх» + βαλειν — «бросать») — геометрическое место точек M Евклидовой плоскости, для которых абсолютное значение разности расстояний от M до двух выделенных точек и (называемых фокусами) постоянно. Точнее,

    причем 2a > 0.” border=”0″ />

    Наряду с эллипсом и параболой, гипербола является коническим сечением и квадрикой. Гипербола может быть определена как коническое сечение с эксцентриситетом, большим единицы.

    Содержание

    История

    Термин «гипербола» (греч. ὑπερβολή — избыток) был введён Аполлонием Пергским (ок. 262 год до н. э. — ок. 190 год до н. э.), поскольку задача о построении точки гиперболы сводится к задаче о приложении с избытком.

    Определения

    Гипербола может быть определена несколькими путями.

    Коническое сечение

    Гипербола может быть определена, как множество точек, образуемое в результате сечения кругового конуса плоскостью, отсекающей обе части конуса. Другими результатами сечения конуса плоскостью являются парабола, эллипс, а также такие вырожденные случаи, как пересекающиеся и совпадающие прямые и точка, возникающие, когда секущая плоскость проходит через вершину конуса. В частности, пересекающееся прямые можно считать вырожденной гиперболой, совпадающей со своими асимптотами.

    Как геометрическое место точек

    Через фокусы

    Гипербола может быть определена, как Геометрическое место точек, абсолютная величина разности расстояний от которых до двух заданных точек, называемых фокусами, постоянна.

    Для сравнения: кривая постоянной суммы расстояний между двумя точками — эллипс, постоянного отношения — окружность Аполлония, постоянного произведения — овал Кассини.

    Через директрису и фокус

    Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная 1″ border=”0″ /> называется эксцентриситетом гиперболы.

    Связанные определения

    Асимптоты гиперболы (красные кривые), показанные голубым пунктиром, пересекаются в центре гиперболы, C. Два фокуса гиперболы обозначены как F1 и F2. Директрисы гиперболы обозначены линиями двойной толщины и обозначены D1 и D2. Эксцентриситет ε равен отношению расстояний точки P на гиперболе до фокуса и до соответствующей директрисы (показаны зелёным). Вершины гиперболы обозначены как ±a. Параметры гиперболы обозначают следующее:

    a — расстояние от центра C до каждой из вершин
    b — длина перпендикуляра, опущенного из каждой из вершин на асимптоты
    c — расстояние от центра C до любого из фокусов, F1 и F2,
    θ — угол, образованный каждой из асимптот и осью, проведённой между вершинами

    • Гипербола состоит из двух отдельных кривых, которые называют ветвями.
    • Ближайшие друг к другу точки двух ветвей гиперболы называются вершинами.
    • Кратчайшее расстояние между двумя ветвями гиперболы называется большой осью гиперболы.
    • Середина большой оси называется центром гиперболы.
    • Расстояние от центра гиперболы до одной из вершин называется большой полуосью гиперболы.
      • Обычно обозначается a.
    • Расстояние от центра гиперболы до одного из фокусов называется фокальным расстоянием.
      • Обычно обозначается c.
    • Оба фокуса гиперболы лежат на продолжении большой оси на одинаковом расстоянии от центра гиперболы. Прямая, содержащая большую ось гиперболы, называется действительной или поперечной осью гиперболы.
    • Прямая, перпендикулярная действительной оси и проходящая через её центр называется мнимой или сопряженной осью гиперболы.
    • Отрезок между фокусом гиперболы и гиперболой, перпендикулярный её действительной оси, называется фокальным параметром.
    • Расстояние от фокуса до асимптоты гиперболы называется прицельным параметром.
      • Обычно обозначается b.
    • В задачах, связанных с движением тел по гиперболическим траекториям расстояние от фокуса до ближайшей вершины гиперболы называется перицентрическим расстоянием
      • Обычно обозначается ..

    Соотношения

    Для характеристик гиперболы определённых выше подчиняются следующим соотношениям

    • .
    • .
    • .
    • .
    • .
    • .
    • .
    • .

    Типы гипербол

    Гиперболу, у которой , называют равнобочной. Равнобочная гипербола в некоторой прямоугольной системе координат описывается уравнением

    при этом фокусы гиперболы располагаются в точках (a, a) и (−a,−a).

    Гиперболы, связанные с треугольником

    • гипербола Енжабека — кривая, изогонально сопряженнаяпрямой Эйлера;
    • гипербола Киперта — кривая, изогонально сопряженная прямой проходящей через точка Лемуана и центр описанной окружности данного треугольника.

    Уравнения

    Декартовы координаты

    Гипербола задаётся уравнением второй степени в декартовых координатах (x, y) на плоскости:

    ,

    где коэффициенты Axx, Axy, Ayy, Bx, By, и C удовлетворяют следующему соотношению

    Канонический вид

    Перемещением центра гиперболы в начало координат и вращением её относительно центра уравнение гиперболы можно привести к каноническому виду

    ,

    где a и b — полуоси [источник?] .

    Полярные координаты

    Если полюс находится в фокусе гиперболы, а вершина гиперболы лежит на продолжении полярной оси, то

    Если полюс находится в фокусе гиперболы, а полярная ось параллельна одной из асимптот, то

    Уравнения в параметрической форме

    Подобно тому, как эллипс может быть представлен уравнениями в параметрической форме, в которые входят тригонометрические функции, гипербола в прямоугольной системе координат, центр которой совпадает с её центром, а ось абсцисс проходит через фокусы, может быть представлена уравнениями в параметрической форме, в которые входят гиперболические функции [1] .

    В первом уравнении знак «+» соответствует правой ветви гиперболы, а «-» — её левой ветви.

    Свойства

    • Оптическое свойство. Свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
      • Иначе говоря, если и фокусы гиперболы, то касательная в любой точки гиперболы является биссектрисой угла .
    • Для любой точки лежащей на гиперболе отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.
    • Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей, а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.
    • Каждая гипербола имеет сопряженную гиперболу, для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

    Асимптоты

    Для гиперболы, заданной в каноническом виде

    уравнения двух асимптот имеют вид:

    .

    Диаметры и хорды

    Диаметром гиперболы, как и всякого конического сечения, является прямая, проходящая через середины параллельных хорд. Каждому направлению параллельных хорд соответствует свой сопряженный диаметр. Все диаметры гиперболы проходят через её центр. Диаметр, соответствующий хордам, параллельным мнимой оси, есть действительная ось; диаметр соответствующий хордам, параллельным действительной оси, есть мнимая ось.

    Угловой коэффициент параллельных хорд и угловой коэффициент соответствующего диаметра связан соотношением

    Если диаметр a делит пополам хорды, параллельные диаметру b, то диаметр b делит пополам хорды, параллельные диаметру a. Такие диаметры называются взаимно сопряженными. Главными диаметрами называются взаимно сопряженные и взаимно перпендикулярные диаметры. У гиперболы есть только одна пара главных диаметров — действительная и мнимая оси.

    Касательная и нормаль

    Поскольку гипербола является гладкой кривой, в каждой её точке (x, y) можно провести касательную и нормаль. Уравнение касательной к гиперболе, заданной каноническим уравнением, имеет вид:

    ,

    или, что то же самое,

    Уравнение касательной произвольной плоской линии имеет вид

    Каноническое уравнение гиперболы можно представить в виде пары функций

    .

    Тогда производная этих функций имеет вид

    .

    Подставив это уравнение в общее уравнение касательной, получим

    Уравнение нормали к гиперболе имеет вид:

    Уравнение нормали произвольной плоской линии имеет вид

    .

    Каноническое уравнение гиперболы можно представить в виде пары функций

    .

    Тогда производная этих функций имеет вид

    .

    Подставив это уравнение в общее уравнение нормали, получим

    Кривизна и эволюта

    Кривизна гиперболы в каждой её точке (x, y) определяется из выражения:

    .

    Соответственно, радиус кривизны имеет вид:

    .

    В частности, в точке (a, ) радиус кривизны равен

    Формула для радиуса кривизны плоской линии, заданной параметически, имеет вид:

    .

    Воспользуемся параметрическим представлением гиперболы:

    Тогда, первая производная x и y по t имеет вид

    ,

    а вторая производная –

    Подставляя эти значения в формулу для кривизны получаем:

    Координаты центров кривизны задаются парой уравнений:

    Подставив в последнюю систему уравнений вместо x и y их значения из параметрического представления гиперболы, получим пару уравнений, задающих новую кривую, состоящую из центров кривизны гиперболы. Эта кривая называется эволютой гиперболы.

    Гипербола: формулы, примеры решения задач

    Определение гиперболы, решаем задачи вместе

    Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

    Каноническое уравнение гиперболы имеет вид:

    ,

    где a и b – длины полуосей, действительной и мнимой.

    На чертеже ниже фокусы обозначены как и .

    На чертеже ветви гиперболы – бордового цвета.

    При a = b гипербола называется равносторонней.

    Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

    Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

    .

    Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

    Точки и , где

    ,

    называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

    называется эксцентриситетом гиперболы.

    Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

    Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

    Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

    Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

    То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

    Подставляем и вычисляем:

    Получаем требуемое в условии задачи каноническое уравнение гиперболы:

    .

    Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

    Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

    .

    Результат – каноническое уравнение гиперболы:

    Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

    .

    Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

    .

    На чертеже расстояния обозначены оранжевыми линиями.

    Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

    Прямые, определяемые уравнениями

    ,

    называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

    Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

    ,

    где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

    Пример 4. Дана гипербола . Составить уравнение её директрис.

    Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

    .

    Получаем уравнение директрис гиперболы:

    Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

    Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

    Асимптоты гиперболы определяются уравнениями

    .

    На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

    Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

    , где .

    В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

    Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

    Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

    .

    Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

    Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

    Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

    Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

    1) b = 4 , а один из фокусов в точке (5; 0)

    2) действительная ось 6, расстояние между фокусами 8

    3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

    Кривые второго порядка – определение и построение с примерами решения

    Содержание:

    1. Эллипс
    2. Гипербола
    3. Парабола
    4. Исследование на плоскости уравнения второй степени
    5. Кривые второго порядка в высшей математике
      1. Окружность
      2. Эллипс
      3. Гипербола
      4. Парабола
    6. Кривые второго порядка на плоскости

    Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру – значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде

    1. Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
    2. если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.

    Это определение в более компактной записи выглядит следующим образом. Уравнение называется уравнением фигуры, если , то есть (а, b) – решение уравнения F(x,y) = 0.

    Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.

    Возможны два вида задач:

    1. дано уравнение и надо построить фигуру Ф, уравнением которой является ;
    2. дана фигура Ф и надо найти уравнение этой фигуры.

    Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.

    Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

    1. Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
    2. Записать в координатах условие, сформулированное в первом пункте.

    Эллипс

    Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).

    Точки называются фокусами эллипса. Обозначив расстояние между фокусами через 2с, а сумму расстояний от точек эллипса до фокусов через 2а, имеем с b. В этом случае а называется большой полуосью, a b – малой.

    Если а =Ь, то уравнение (7.3) можно переписать в виде:

    (7.5)

    Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением

    Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым

    Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами . Их длины и задаются формулами Прямые называются директрисами эллипса. Директриса называется левой, а – правой. Так как для эллипса и, следовательно, левая директриса располагается левее левой вершины эллипса, а правая – правее правой вершины.

    Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.

    Гипербола

    Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).

    Точки называются фокусами гиперболы. Пусть по-прежнему расстояние между фокусами равно 2с. Модуль расстояний от точек гиперболы до фокусов обозначим через а. По условию, а 0) (рис. 9.7). Ось абсцисс проведём через фокус F перпендикулярно директрисе. Начало координат расположим посередине между фокусом и директрисой. Пусть А – произвольная точка плоскости с координатами (х, у) и пусть . Тогда точка А будет лежать на параболе, если r=d, где d- расстояние от точки А до директрисы. Фокус F имеет координаты .

    Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим

    или

    (9.4.1)

    Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.

    Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:

    и сделаем параллельный перенос по формулам

    В новых координатах преобразуемое уравнение примет вид: где р – положительное число, определяется равенством .

    Пример:

    Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию, называется параболой. Прямая у = -1 называется директрисой параболы, а точка F – фокусом параболы. Чтобы выяснить, как располагаются точки Р, удовлетворяющие условию, запишем это равенство с помощью координат: , или после упрощения . Это уравнение геометрического места точек, образующих параболу (рис. 9.8).

    Кривые второго порядка на плоскости

    Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

    где коэффициенты А, В и С не равны одновременно нулю

    Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

    Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

    Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

    которое называют каноническим уравнением эллипса.

    Число а называют большей полуосью эллипса, число – мень-

    шей полуосью эллипса, 2а и 2b – соответственно большей и меньшей осями эллипса. Точки называют вершинами эллипса, а – его фокусами (рис. 12).

    Координатные оси являются осями симметрии эллипса, а начало координат – его центром симметрии. Центр симметрии эллипса называется центром эллипса.

    Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

    В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.

    Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

    Так, в случае а>b эксцентриситет эллипса выражается формулой:

    Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.

    Пример:

    Показать, что уравнение

    является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

    Решение:

    Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

    – каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью

    Найдем эксцентриситет эллипса:

    Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.

    В новой системе координат координаты вершин и фокусов гиперболы будут следующими:

    Переходя к старым координатам, получим:

    Построим график эллипса.

    Задача решена.

    Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

    Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

    При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

    Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

    Сайт пишется, поддерживается и управляется коллективом преподавателей

    Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

    Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

    Читайте также:
    Число сочетаний основные свойства, применение математических формул
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: