Эффект Доплера формула, исследование и автор физического явления, суть теории, применение закона на практике, примеры задач

Эффект Доплера – что это такое? Определение эффекта, примеры и формула расчета

Вы наверняка замечали, что звук гудка проезжающего мимо вас автомобиля или поезда меняется, в зависимости от того, приближаются они к вам или отдаляются от вас. Это нетрудно заметить, но труднее понять и объяснить, что и смог сделать в 1842 году австрийский математик и физик Кристиан Доплер. Именно это объяснение сделало его всемирно известным учёным, а его открытию суждено было изменить не только физику, но и астрономию, космологию, медицину, да и повседневную жизнь тоже.

1. Определение эффекта Доплера

Что же происходит и в чём причина этого эффекта?

Нам хорошо известно, что звук — это механические упругие волны. Основными характеристиками любой волны являются:

  • длина волны;
  • период колебаний в волне;
  • частота колебаний в волне;
  • амплитуда;
  • скорость волны.

Мы будем говорить сейчас о трёх из них — длине волны, скорости волны и частоте колебаний, которые связаны друг с другом формулой где λ — длина волны, v — скорость волны, а ν — частота колебаний. Если, к примеру, находящийся в воде поплавок начнёт совершать вертикальные колебания, то по воде начнут расходиться круги, расстояние между которыми и будет равно длине волны. Поплавок, в данном случае, представляет собой неподвижный источник волн, то есть, совершая колебания, он, тем не менее, остаётся на том же месте по отношению к неподвижному относительно Земли наблюдателю. Но совсем иначе будет выглядеть волновая картина, если источник волн будет либо приближаться, либо удаляться от наблюдателя.

Проводя наблюдения за волнами на воде, Доплер заметил, что когда источник волн приближается к наблюдателю, то длина волны становится немного меньше, а следовательно, частота становится немного больше, то есть количество гребней перед движущимся источником волн больше, чем позади него. Именно поэтому звук приближающегося автомобиля или поезда будет более высоким. С другой стороны, когда источник волн удаляется от наблюдателя, то длина волны становится немного больше, а следовательно, частота становится немного меньше, то есть количество гребней волны позади движущегося источника меньше, чем впереди него. Именно поэтому звук удаляющегося от нас автомобиля или поезда будет более низким. В этом и состоит суть эффекта Доплера — изменение длины волны или её частоты при движении источника волны к наблюдателю или от него. И это изменение можно довольно легко подсчитать, зная скорость движения источника волн и их длину или частоту в случае, если источник неподвижен относительно наблюдателя.

2. Эксперименты

Чтобы увидеть эффект Доплера своими глазами или услышать своими ушами вовсе не нужны специальные лаборатории или сложные установки. Вот описание двух простых экспериментов, в ходе которых можно его наблюдать.

Возьмите свисток и прикрепите к нему длинную гибкую трубку так, чтобы можно было свистеть в свисток при помощи этой трубки. Если держать трубку и свисток неподвижно и дуть в трубку, то будет слышаться ровный свист, а если раскрутить трубку со свистком, не прекращая дуть в неё, то можно будет услышать как меняется звук свистка при приближении к вам и отдалении от вас. Это и будет наглядным подтверждением эффекта Доплера.

Второй эксперимент осуществить сложнее, но именно его осуществил в 1845 году голландский метеоролог и химик Христофор Бёйс-Баллот. Суть эксперимента сводилась к тому, что в поезде размещались музыканты-трубачи, которые должны были играть одну и ту же ноту, а на станции, мимо которой проезжал этот поезд, другая группа музыкантов должна была внимательно слушать как меняется тон этого звука при приближении и удалении поезда. Музыканты — люди с очень хорошим слухом, и им как никому другому проще всего определить это изменение, что они успешно и выполнили, подтвердив экспериментально открытый Доплером эффект.

Но самый простой способ убедиться в существовании этого эффекта — прислушаться к сирене машины скорой помощи в момент, когда она приближается к вам и в момент, когда она, проехав мимо вас, удаляется. Звук сирены будет отличаться, хотя никаких изменений в работе сирены на самом деле не происходит. Это и есть эффект Доплера для звуковых волн.

3. Формула и применение

Как уже было сказано, зная скорость источника волн по отношению к неподвижному наблюдателю можно определить регистрируемую приёмником частоту волны. Формулу, позволяющую это сделать, нетрудно вывести, зная, что (здесь v — скорость волн в данной среде, ν — частота испускаемых источником волн), и, если источник приближается к неподвижному наблюдателю со скоростью u относительно среды, то и тогда частота, которую будет регистрировать неподвижный приёмник, будет равна:

Читайте также:
Электростатика — основные понятия и формулы раздела физики с примерами

Если же сам приёмник движется относительно среды со скоростью u1, то частота регистрируемых им волн будет равна:

Если же и источник, и приёмник движутся относительно друг друга, то:

Эффект Доплера, как вы, наверное, уже догадались, возникает не только при распространении звуковых волн, но и вообще любых волн, в том числе и электромагнитных, одним из видов которых является видимый свет. Если бы наш глаз был сверхчувствителен, то мы могли бы заметить, что как и в случае со звуком, если источник света приближается к наблюдателю, то длина волны становится меньше, а частота больше, и наоборот, если источник света удаляется от наблюдателя, то длина волны увеличивается, а частота уменьшается. То есть свет зелёной лазерной указки при стремительном её приближении к нам наблюдался бы как слегка голубоватый, а при удалении от нас был бы более жёлтым. Но наш глаз различить этого не может, зато точные приборы могут и этот эффект позволил учёным сделать одно очень важное наблюдение — спектры наблюдаемых нами звёзд немного сдвинуты по частоте в меньшую сторону, что называется «красным смещением» и является доказательством того, что галактики удаляются друг от друга, а значит, Вселенная расширяется. Это, пожалуй, самое важное применение эффекта Доплера в фундаментальной науке. Но эффект Доплера и связанные с ним формулы нашли очень широкое применение не только в астрономии. Прежде всего, стоит сказать о медицине. В ультразвуковой диагностике эффект Доплера применяется для исследования внутренних органов человека. А также, именно эффект Доплера лежит в основе действия полицейских радаров, определяющих скорость автомобиля, и камер, следящих за скоростным режимом на дорогах. Эффект Доплера применяется в метеорологии, воздушной навигации, при расчётах траекторий спутников, системах навигации.

Эффект Доплера для чайников: суть явления, применение, формула

  • 12 января 2021 г.
  • 9 минут
  • 91 842
  • 2

Эффект Доплера – важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия. Волна — это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой, длиной и частотой. Звук, который мы слышим — это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если хотите узнать больше о колебаниях, волнах и резонансе — добро пожаловать в отдельную статью нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, вы стоите на остановке. К вам по улице движется карета скорой помощи со включенной сиреной. Частота звука, которую вы будете слышать по мере приближения машины, не одинакова.

Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться. Это и есть эффект Доплера.

Эффект Доплера

Частота и длина волны излучения, воспринимаемого наблюдателем, изменяется вследствие движения источника излучения.

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав. Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером, было впоследствии названо его именем. Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов. В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом. Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы.

Читайте также:
Сила тока определение, формула расчета постоянной и переменной величины

Другие музыканты находились на станции и слушали, что играют их коллеги. Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).

Первые эксперименты по подтверждению эффекта Доплера

Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией.

Эффект Доплера также используют в оптике, акустике, радиоэлектронике, астрономии, радиолокации.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.

Красное и синее смещение при приближении и отдалении объектов

Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с – скорость распространения волн в среде, w0 – частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени. Пусть света – с, v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника. Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у специалистов студенческого сервиса, и они охотно поделятся своим опытом! А в конце – еще немного про теорию Большого взрыва и эффект Доплера.

Эффект Доплера в теории и на практике

Как и было обещано, сегодня речь пойдет о решениях, лежащих в основе работы алгоритма обнаружения движения.

Самая важная операция в этом алгоритме – быстрое преобразование Фурье или сокращенно БПФ. БПФ – это оптимизированный под машинные вычисления вариант дискретного преобразования Фурье.

Демонстрационная программа, написанная на C#.Net с использованием уже несколько устаревшего Windows Forms, наглядно демонстрирует практическое применение БПФ и эффекта Доплера.

Наука | Научпоп

6.1K постов 68.6K подписчиков

Правила сообщества

ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.

Основные условия публикации

– Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

– Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

– Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

– Видеоматериалы должны иметь описание.

– Названия должны отражать суть исследования.

– Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.

Не принимаются к публикации

Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

Читайте также:
Манометр - прибор для измерения давления, класс точности

– Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

– Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.

Наказывается баном

– Оскорбления, выраженные лично пользователю или категории пользователей.

– Попытки использовать сообщество для рекламы.

– Многократные попытки публикации материалов, не удовлетворяющих правилам.

– Нарушение правил сайта в целом.

Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.

Просто и наглядно: растянуть пружинку. Точку, исполняющую роль слушателя немного притянуть в направлении, куда он якобы идёт. Пружинка всё покажет.

Оборот денег в семье.

Старший сын подарил младшей сестре 5000 руб на днюху(13 лет разница).
Сегодня она подходит ко мне:
– Пап, вот 5000 рублей. И вот мои заказы на али. Это подарки тебе, маме, брату, его жене и их мелкому. Успеют же приехать? Можешь оплатить по карте?
– Конечно, доча.
Оплатил. Деньги взял. Ибо это её решение. Добавлю их в её подарок. Но об этом ей, конечно, не скажу.

Новый Год на носу. Подарки. Берегла эти деньги с апреля. Вот так решила их потратить.

У меня хорошие дети.

Не рой яму другому.

Мастер спорта

Прошу юридической помощи, напали чеченцы в метро

Здравствуйте, я очень сомневался писать пост или нет, но сил уже нет бороться в одиночку с нашей правоохранительной системой. 30 августа я ехал на работу к 14:00, на выходе из метро Юго-Восточная на меня напали 2 чеченца ( https://www.m24.ru/shows1/14/308198 сюжет на Москва 24, правда они вырезали специально тот кусок, когда я отмахивался, разрывая дистанцию, уже после нескольких минут избиения в голову и назвали это “дракой”, хотя ни одного удара я не нанес), я подбежал к службе безопасности метрополитена, одна из сотрудниц сразу убежала, вторая стояла и смотрела как меня избивают, ничего не делая. В итоге мне сломали нос и нанесли множественные повреждения в области головы. Когда они меня били они орали, что они из Чечни и всех русских вы**ут и ничего им не сделают, явный состав 282 статьи УК РФ, однако в итоге им инкриминировали лишь 115. После их задержания, когда я ждал скорую, полицейская сказала, что у них был нож и они орали, что воевали против русских в чеченскую войну, а также что они находятся под действием наркотиков (в таганском отделении опер потом также сказал). После меня отвезли в ГКБ им. Пирогова, в приемное отделение к нейрохирургу, где я пробыл более 6 часов, как в последствии выяснилось, принял со скорой меня санитар, а заключение выдал медбрат. В итоге в заключении прописаны препараты, которые мне якобы ввели, но их не вводили + заключение противоречит в некоторых моментах самому себе. Госпитализировать меня отказались, хотя по словам врачей скорой должны были госпитализировать на 10-14 дней. На следующий день я пошел в травмпункт рядом с домом, чтобы снять всё-таки побои, но травматолог сказал, что поставил бы ушиб мягких тканей только в случае наличия разрыва кожи (хотя это уже должно быть рваной раной, в моём понимании).

На данном этапе мне не дали ознакомиться с материалами уголовного дела, нож по словам дознавательницы в деле не фигурирует, я просил ознакомить меня с записями с камер видеонаблюдения, мне было отказано, а также с дозоров полицейских, тоже было отказано. Дознавательница не присылает никаких повесток по следственным действиям, я посмотрел, её действия нарушают 164, 188 и 192 статьи УПК РФ, когда на очередной встрече я хотел написать заявление на отвод дознавателя. Я думаю, что дознавательница ангажирована к этим чеченцам и/или диаспоре. При первой встрече, назначенной на 10:00, она отказалась меня принять к оговоренному по телефону (повестки не было) времени, а когда из кабинета выходил другой сотрудник, я слышал, как она говорит кому-то из своих “мариную **анного терпилу”.

Читайте также:
Принцип суперпозиции формулировка теории силы полей, формула

Прошу оказать юридическую помощь, что делать с этой дознавательницей? Что делать с врачами, которые отказались меня принимать и госпитализировать? Мне назначена очная ставка на 20 ноября, но я боюсь туда идти, потому что возможен вариант, что эти чеченцы придут туда с оружием.

Подбегая к сотрудникам безопасности метро, я включил камеру, думал это их вразумит, я стал кричать, что они хотят меня убить, но люди даже не обернулись. У меня сохранился кусочек видео, до того момента, как один из нападавших выхватил телефон (когда он выхватил телефон, то прервал запись) у меня из рук и начал меня избивать.

Эффект Доплера

Эффектом Доплера называют изменение частоты и длины волн, вызванное перемещением в пространстве их источника и приемника. При этом, волновая скорость будет зависеть от особенностей среды, в которой происходит движение. Источник, выпустивший волны, уже никак не может повлиять на них.

Волна определяется длиной и частотой. Первое – это расстояние между самой высокой и самой низкой точкой волны. Второй – количество самых высоких точек (гребней, пиков – называйте как угодно), достигнутое за секунду. Эти характеристики связаны скоростью распространения волн. В разных средах она тоже будет изменяться.

Все это звучит довольно тяжело и непонятно, но на деле все просто. Если источник волн и приемник начинают двигаться, то частота либо увеличивается, либо уменьшается. Зависит от того, в какую сторону относительно друг друга они двигаются: приближаются или удаляются. И это изменение частоты напрямую зависит от скорости источника, который двигается к приемнику волн либо от него.

Первым данную зависимость обнаружил австрийский физик и математик Кристиан Доплер в 1842 году. На эффекте Доплера основывается множество методов изучения характеристик удаленных комических объектов, например, спектральный анализ.

Универсальность закона

На практике выяснено, что эффект Доплера работает не только на световых волнах, но и на любых других. Проще всего понять это на примере звука. Представьте машину с сиреной, которая движется в вашу сторону. По началу звук будет очень тихим, так как она находится достаточно далеко. Но по мере приближения длина волны будет уменьшаться, и звук станет гораздо громче. В обратную сторону все работает точно так же, но наоборот.

Универсальность закона

Эффект Доплера в астрономии

В науке данное явление активно используется для изучения отдаленных небесных тел. Применение спектрального анализа позволяет узнать о составе того или иного космического объекта. Это становится возможным благодаря наблюдению через призму спектрометра, в которой можно рассмотреть линии химических элементов. Эффект Доплера позволил Эдвину Хабблу узнать, что галактики отдаляются друг от друга, так как он обнаружил их красное смещение. Это еще раз подтверждает, что Вселенная расширяется.

Сегодня эффект Доплера помогает обнаруживать новые экзопланеты и даже целые планеты-гиганты. Эти громадины, вращаясь вокруг своей звезды, вызывают смещение в ее спектре, благодаря чему их и находят. Таким образом, за первое десятилетие 21 века было обнаружено несколько сотен различных планет.

Где еще применяется эффект Доплера

  • Доплеровский радар.

Это специальное устройство, улавливающее изменение частоты волн, исходящих от определенных объектов. Благодаря этому можно рассчитать скорость движения этого предмета. Наиболее знакомый вам прибор, работающий по такому принципу, – автомобильный радар, который фиксирует нарушения скоростного режима. Радары военной и гражданской авиации, а также судоходства, используют ту же схему.

Доплеровский радар

  • Медицина.

В этой области данное явление применяется очень широко, но чаще всего с ним сталкиваются беременные женщины, проходящие акушерские обследования. Именно благодаря этому эффекту можно наблюдать за тем, как протекает беременность. Существует целая медицинская процедура, получившая название доплерография, благодаря улавливанию изменений частоты ультразвуковых волн.

  • Измерения скоростей потоков.

С помощью эффекта Доплера можно рассчитать скорость потока газа или жидкости без необходимости помещения прибора в сам поток. Таким образом, не создается никаких препятствий для движения потока, а измерение скорости происходит с помощью волнового рассеяния.

  • Датчики движения.

Любая охранная система, имеющая на борту такие сканеры, работает с помощью эффекта Доплера. Раздвижные двери в аэропортах и вокзалах тоже.

VI Международная студенческая научная конференция Студенческий научный форум – 2014

ХАРАКТЕРИСТИКА ЭФФЕКТА ДОПЛЕРА

  • Авторы
  • Файлы работы
  • Сертификаты

ВВЕДЕНИЕ

Особый интерес в диагностике вызывает использование эффекта Доплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты). При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя. В настоящее время на основе эффекта Доплера исследованы только движение крови и биение сердца.

Читайте также:
Все определения по физике за 9 класс основные понятия, термины, законы и формулы по термодинамике, динамике, механике, оптике, молекулярной физике

ИСТОРИЯ ОТКРЫТИЯ ЯВЛЕНИЯ

Христиан Доплер, Австрийский физик, родился 29 ноября 1803 года в Зальцбурге в семье каменщика. В 1825 году окончил Политехнический институт в Вене, с 1829 по 1833 преподавал высшую математику в Вене. Затем, в течение полутора лет, ему пришлось работать клерком на хлопчатобумажной фабрике. Он даже хотел эмигрировать в Америку, но получил приглашение быть профессором в Праге, где проработал с 1835 по 1847 год. С 1847 года – профессор Горной и Лесной академий в Хемнице, с 1848 года – член Венской академии Наук, с 1850 профессор Венского университета и директор первого в мире Физического института, созданного при Венском университете по его инициативе. Умер Христиан Доплер 17 марта 1853 года в Венеции от туберкулеза.

В мае 1842 года Кристиан Доплер опубликовал работу, где, сформулировал принцип, согласно которому «при относительном движении источника и приемника излучения регистрируемая частота излучения зависит от скорости их движения». Впервые этот эффект был подтвержден экспериментально в акустическом диапазоне волн в 1845 году английским ученым Байсом Бэллотом. Поставленный им опыт состоял в следующем. На платформе, сцепленной с движущимся локомотивом, находился музыкант, играющий на одной ноте. Второй музыкант с абсолютным слухом стоял на перроне вокзала. Он констатировал, что, когда поезд приближался к станции, труба звучала на полтона выше; когда поезд удалялся от станции этому музыканту казалось, что труба играет на полтона ниже. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера. Применительно к задачам астрономии данный эффект был проверен Уильямом Хаггинсом в 1868 году. В оптическом диапазоне в лабораторных условиях это явление наблюдалось русским ученым А.А.Белопольским в 1900 году.

Принцип Доплера получил многочисленные применения в самых разнообразных областях физики и техники, там, где надо измерить скорость предметов, которые могут излучать или отражать волны, например:

– Детектор движения в охранных системах.

– Навигация в подводных лодках.

– Измерение силы ветра и скорости облаков в метеорологии.

СУЩНОСТЬ ФИЗИЧЕСКОГО ЯВЛЕНИЯ

Эффектом Доплера называют изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника. Источник, двигаясь к приемнику, как бы сжимает пружину – волну (рис.1).

Данный эффект наблюдается при распространении звуковых волн (акустический эффект) и электромагнитных волн (оптический эффект).

Рассмотрим несколько случаев проявления акустического эффекта Доплера:

1) Пусть приемник звуковых волн П в газообразной (или жидкой) среде неподвижен относительно нее, а источник И удаляется от приемника со скоростью вдоль соединяющей их прямой (рис.2, а). Источник смещается в среде за время, равное периоду его колебаний, на расстояние , где – частота колебаний источника.

Поэтому при движении источника длина волны в среде отлична от ее значения при неподвижном источнике: , где – фазовая скорость волны в среде. Частота волны, регистрируемая приемником,

2) Если вектор скорости источника направлен под произвольным углом к радиус-вектору , соединяющему неподвижный приемник с источником (рис. 2, б), то частота волны будет равна:

3) Если источник неподвижен, а приемник приближается к нему со скоростью вдоль соединяющей их прямой (рис.2, в), то длина волны в среде. Однако, скорость распространения волны относительно приемника равна , так что частота волны, регистрируемая приемником

4) В том случае, когда скорость направлена под произвольным углом к радиус-вектору , соединяющему движущийся приемник с неподвижным источником (рис. 2, г), имеем: .

5) В самом общем случае, когда и приемник и источник звуковых волн движутся относительно среды с произвольным скоростями (рис.2, д), частота волн. Эту формулу можно также представить в виде (если )

где – скорость источника волны относительно приемника, а – угол между векторами и . Величина , равная проекции на направление , называется лучевой скоростью источника

Оптический эффект Доплера.

При движении источника и приемника электромагнитных волн относительно друг друга также наблюдается эффект Доплера, т.е. изменение частоты волны, регистрируемой приемником. В отличие от рассмотренного нами эффекта Доплера в акустике, закономерности этого явления для электромагнитных волн можно установить только на основе специальной теории относительности.

Читайте также:
Принципы телевидения - как работает цифровой сигнал читать онлайн

1) Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость источника и наблюдателя. Соотношение, описывающее эффект Доплера для электромагнитных волн в вакууме, с учетом преобразований Лоренца, имеет вид: (релятивистская формула эффекта Доплера), где с — скорость света, v — скорость источника относительно приёмника (наблюдателя), θ – угол между направлением на источник и вектором скорости. Если источник радиально удаляется от наблюдателя, то θ=0, если приближается – θ=π.

Релятивистский эффект Доплера обусловлен двумя причинами:

классический аналог изменения частоты при относительном движении источника и приёмника;

релятивистское замедление времени.

2) При небольших скоростях движения источника волн относительно приемника, релятивистская формула эффекта Доплера совпадает с классической формулой

3) Если источник движется относительно приемника вдоль соединяющей их прямой, то наблюдается продольный эффект Доплера.

В случае сближения источника и приемника ( ) ,

а в случае их взаимного удаления ( )

Продольный эффект Доплера был впервые обнаружен в 1900 г. в лабораторных условиях русским астрофизиком А. А. Белопольским (1854 — 1934) и повторен в 1907 г. Русским физиком Б.Б.Голицыным (1862-1919). Продольный эффект Доплера используется при исследовании атомов, молекул, а также космических тел, так как по смещению частоты световых колебаний, которое проявляется в виде смещения или уширения спектральных линий, определяется характер движения излучающих частиц или тел.

4) Кроме того, из релятивистской теории эффекта Доплера следует существование поперечного эффекта Доплера, наблюдающегося когда угол между волновым вектором и скоростью источника равен и , т.е. в тех случаях, когда источник движется перпендикулярно линии наблюдения (например источник движется по окружности, приемник в центре):

Поперечный эффект Доплера необъясним в классической физике. Он представляет собой чисто релятивистский эффект.

Как видно из формулы, поперечный эффект пропорционален отношению , следовательно он значительно слабее продольного, который пропорционален .

В общем случае вектор относительной скорости можно разложить на составляющие: одна обеспечивает продольный эффект, другая – поперечный.

Существование поперечного эффекта Доплера следует непосредственно из замедления времени в движущихся системах отсчета. Экспериментальное обнаружение поперечного эффекта Доплера явилось еще одним подтверждением справедливости теории относительности; он был обнаружен в 1938 г. в опытах американского физика Г. Айвса.

Впервые экспериментальная проверка существования эффекта Доплера и правильности релятивистской формулы была осуществлена американскими физиками Г. Айвсом и Д. Стилуэллом в 30-х гг. Они с помощью спектрографа исследовали излучение атомов водорода, разогнанных до скоростей м/с. В 1938 г. результаты были опубликованы. Резюме: поперечный эффект Доплера наблюдался в полном соответствии с релятивистскими преобразованиями частоты (спектр излучения атомов оказался сдвинут в низкочастотную область); вывод о замедлении времени в движущихся инерциальных системах отсчета подтвержден.

ПРИМЕНЕНИЕ ЭФФЕКТА ДОПЛЕРА В МЕДИЦИНЕ

Этот эффект широко применяется в акушерстве, так как звуки, идущие от матки легко регистрируются. На ранней стадии беременности звук проходит через мочевой пузырь. Когда матка наполняется жидкостью, она сама начинает проводить звук. Положение плаценты определяется по звукам протекающей через нее крови, а через 9 – 10 недель с момента образования плода прослушивается биение его сердца. С помощью ультразвуковых устройств количество зародышей или констатировать смерть плода.

На его же принципе основана диагностика показателей кровотока практически в любом сосуде, что очень важно для выявления патологии поражающей сердечнососудистую систему и контроля ее лечения. При исследовании кровотока пациента посредством ультразвукового исследования фиксируют изменение частоты ультразвукового сигнала при отражении его от движущихся частиц крови, основную массу которых составляют эритроциты.

Для регистрации эффекта Доплера используют ультразвук, посылаемый в направлении исследуемого сосуда. Отражаясь от движущихся эритроцитов, ультразвук, принимаемый устройством, соответственно меняет частоту. Это позволяет получить информацию о скорости движения крови по исследуемому участку сосудистого русла, направлении движения крови, объеме кровяной массы, движущейся с определенными скоростями, и, исходя из этих параметров, обосновывать суждение о нарушении кровотока, состоянии сосудистой стенки, наличии атеросклеротического стеноза или закупорке сосудов, а также оценить коллатеральное кровообращение.

Трение внутри потока крови обуславливает распределение скоростей в нормальном сосуде так, что в пристеночных слоях скорость близка к нулю, а по оси сосуда достигает максимума. Спектр доплеровского сигнала вследствие этого близок к сплошному, и поле между нулевой линией и огибающей спектра (максимальная частота, соответствующая максимальной скорости движения в данный момент времени) в норме оказывается достаточно равномерно заполненным, за исключением небольшого просвета под систолическим пиком. В зависимости от сосуда спектрограмма имеет характерный вид. Например, в мозговых сосудах циркуляторное сопротивление низкое, в результате чего движение крови имеет однонаправленный характер во все фазы сердечного цикла, так что систолическая и диастолическая фазы доплеросонограммы лежат выше нулевой линии, а диастолическая скорость достаточно велика.

Читайте также:
Дифракционная решетка формулы, период, виды дифракции света

При стенозе скорость движения в стенозированном участке возрастает пропорционально степени стеноза. Визуально это выражается в резком увеличении амплитуды систолического пика, сразу по выходе из стенозированного участка возникают турбулентности с частичным обратным кровотоком, это выглядит как появление спектральных составляющих ниже нулевой линии, а расширение диапазона варьирования скоростей движения крови приводит к расширению спектра частот доплеровского сигнала.

Применение ультразвука в терапии и хирургии

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 – 3,0 Вт/см2) – неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см2) основная цель – вызвать управляемое избирательное разрушение в тканях. Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе – ультразвуковую хирургию.

Применение ультразвука в хирургии

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Хирургия с помощью фокусированного ультразвука

Хирургическая техника должна обеспечивать управляемость разрушения тканей, воздействовать только на четко ограниченную область, быть быстродействующей, вызывать минимальные потери крови. Мощный фокусированный ультразвук обладает большинством из этих качеств. Возможность использования фокусированного ультразвука для создания зон поражения в глубине органа без разрушения вышележащих тканей изучено в основном в операциях на мозге. Позже операции проводились на печени, спинном мозге, почках и глазе.

Применение ультразвука в физиотерапии

Одно из наиболее распространенных применений ультразвука в физиотерапии – это ускорение регенерации тканей и заживления ран. Восстановление тканей можно описать с помощью трех перекрывающихся фаз. В течение воспалительной фазы фагоцитарная активность макрофагов и полиморфонуклеарных лейкоцитов ведет к удалению клеточных фрагментов и патогенных частиц. Переработка этого материала происходит главным образом при помощи лизосомальных ферментов макрофагов. Известно, что ультразвук терапевтических интенсивностей может вызвать изменения в лизосомальных мембранах, тем самым ускоряя прохождение этой фазы. Вторая фаза в залечивании ран -пролиферация или фаза разрастания.

Клетки мигрируют в область поражения и начинают делиться. Фибробласты начинают синтезировать коллаген. Интенсивность заживления начинает увеличиваться, и специальные клетки, миофибробласты, заставляют рану стягиваться. Показано, что ультразвук значительно ускоряет синтез коллагенафибробластами как in vitro, так и in vivo. Если диплоидные фибробласты человека облучить ультразвуком частотой 3 МГц и интенсивностью 0,5 Вт/см2 in vitro, то количество синтезированного белка увеличится. Исследование таких клеток в электронном микроскопе показало, что по сравнению с контрольными клетками в них содержится больше свободных рибосом, шероховатой эндоплазматической сети. Третья фаза -восстановление.

Эластичность нормальной соединительной ткани обусловлена упорядоченной структурой коллагеновой сетки, позволяющей ткани напрягаться и расслабляться без особых деформаций. В рубцовой ткани волокна часто располагаются нерегулярно и запутанно, что не позволяет ей растягиваться без разрывов. Рубцовая ткань, формировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с “нормальной” рубцовой тканью.

Лечение трофических язв

При облучении хронических варикозных язв на ногах ультразвуком частотой 3 МГц и интенсивностью 1 Вт/см2 в импульсном режиме 2 мс : 8 мс были получены следующие результаты: после 12 сеансов лечения средняя площадь язв составляла примерно 66,4% от их первоначальной площади, в то время как площадь контрольных язв уменьшилась всего до 91,6%. Ультразвук может также способствовать приживлению пересаженных лоскутов кожи на края трофических язв.

Ускорение рассасывания отеков

Ультразвук может ускорить рассасывание отеков, вызванных повреждениями мягких тканей, что скорее всего обусловлено увеличением кровотока или местными изменениями в тканях под действием акустических микропотоков.

При экспериментальном исследовании переломов малой берцовой кости у крыс было обнаружено, что ультразвуковое облучение во время воспалительной и ранней пролиферативной фаз ускоряет и улучшает выздоровление. Костная мозоль у таких животных содержала больше костной ткани и меньше хрящей. Однако в поздней пролиферативной фазе приводило к негативным эффектам – усиливался рост хрящей и задерживалось образование костной ткани.

Читайте также:
Уравнение теплового баланса основная формула, физический смысл и суть теплового равновесия в физике, задачи с решениями, примеры нахождения параметров теплопередачи

ДОПЛЕРОГРАФИЯ

Доплерография – методика ультразвукового исследования, основанная на использовании эффекта Доплера. Сущность эффекта состоит в том, что от движущихся объектов ультразвуковые волны отражаются с измененной частотой. Этот сдвиг частоты пропорционален скорости движения лоцируемых структур – если движение направлено в сторону датчика, то частота увеличивается, если от датчика – уменьшается.

ЗАКЛЮЧЕНИЕ

Эффект Доплера заключается в том, что движение источника звука или слушателя вызывает изменение высоты звука. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику уменьшается, а при удалении растет на величину, где длина волны источника, скорость распространения волны, относительная скорость движения источника. Другими словами, если источник звука и слушатель сближаются, то высота звука растёт; если же они удаляются друг от друга, то высота звука понижается. Эффект Доплера получил широкое применение, потому что спокойствие является частью движения и все объекты в нашем мире находятся в состоянии движения.

СПИСОК ЛИТЕРАТУРЫ:

1. Ремизов А.Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. – М.: Высшая школа, 1999. – 616 с.

2. Ливенцев Н.М. Курс физики: Учеб. для вузов. В 2-х т. – М.: Высшая школа, 1978. – т. 1. – 336 с., т. 2. – 333 с.

Эффект Доплера — суть, формула и применение явления

Эффект Доплера – явление физики, связанное с изменением основных характеристик волн. К ним относятся длина, обозначающая расстояние между ближайшими точками, и частота, равная числу колебаний за секунду.

Кратко об авторе физического явления

Кристиан Доплер – австрийский физик, астроном и математик. Он занимался исследованиями в области оптики и акустики. Участвовал в создании дальномера, определяющего расстояния до предметов. Прибор ценен в геодезии, используется при фотографировании.

Доплер изучал микроскопы, теорию цветов. Он наблюдал за движением волн на воде и сделал предположение, что подобным закономерностям подчиняются изменения в воздухе. Ученый опирался на теорию, доказывающую, что свет влияет на восприятие цветов.

Свет представляет собой электромагнитную волну, от длины которой зависят видимые человеком тона и оттенки. Это помогло ему сделать открытие о том, что близкое нахождение у источника света приводит к увеличению частоты волны. Соответственно, при отдалении она уменьшается.

Что такое эффект Доплера простыми словами

Эффект Доплера говорит о том, что волновые характеристики изменяются при движении источника их распространения относительно наблюдателя. Или наоборот, когда движется приемник.

Главное, исключить состояние покоя, он действует только в изменяющейся среде.

Любая волна имеет длину или расстояние между гребнями. При приближении к источнику ее распространения требуется меньше времени, чтобы добраться до наблюдателя. Д

ругими словами, длина ее уменьшается или за секунду пройдет больше пиков. Именно из-за этого увеличивается частота. Она определяется по простой формуле, представляющей собой отношение скорости волны к ее длине.

Если переложить теорию на звук, то удаление от места его распространения приводит к уменьшению его силы, он становится более тихим. Приближение же вызывает увеличение громкости, что также связано с изменением частоты звуковой волны.

Австрийский ученый связал акустические и оптические явления. Природа волн не меняется. Это утверждение привело к более широкому применению открытого метода.

Эффект Доплера можно объяснить и электромагнитными волнами, разные длины которых заставляют видеть отличные друг от друга цвета:

при приближении к источнику спектр смещается к фиолетовому оттенку, который вызывают короткие волны;

при нахождении на дальнем расстоянии отчетливо виден красный цвет, отличающийся большей длиной волны.

Можно рассмотреть как пример движение машины с включенным проблесковым маячком. Обычно изменение его цвета не заметно. Хотя автомобиль сначала приближается, а затем удаляется. Но если бы он двигался со скоростью, приближенной к скорости света, то спектр мигающей лампочки при близком нахождении к наблюдателю сместился бы в синюю сторону, а при удалении стал бы красным.

Сейчас существует обратный эффект Доплера, работающий на основе искусственно созданного материала. Это кристалл, обладающий отрицательным коэффициентом преломления и выполняющий роль призмы. Когда свет проходит через него, при уменьшении расстояния он смещается к красному спектру, при отдалении – приближается к синему.

Читайте также:
Импульс силы определение, формула и формулировка закона сохранения

Применение эффекта Доплера

Именно благодаря эффекту Доплера удалось сделать открытие о том, что вселенная расширяется. Это также объясняют разные оттенки, воспринимаемые при изменении длины волны.

Спектры галактик характеризуются красным цветом, это свидетельствует об удалении. Подобное открытие привело к закону Хаббла, который установил прямую взаимосвязь между красным смещением галактик и расстоянием до них.

Также открытие Доплера помогло обнаружить ряд планет, находящихся за пределами Солнечной системы.

Доплеровские радары измеряют скорости различных объектов. От них отражаются посланные прибором сигналы и по их частоте можно определить, где расположился предмет. Так определяют скорость автомобилей, кораблей, даже следят за облаками в небе и измеряют силу ветра. Значение открытия для радиолокации переоценить невозможно.

Эффект Доплера помогает зафиксировать движение в помещении или около автомобиля, что активно используется для создания охранных сигнализаций. Изменение частоты волн приводит к запуску приборов, задача которых – громкими звуками оповестить о нежелательном вторжении.

Метод, основанный на открытии Доплера, имеет значение и в медицине. Проводятся важные исследования, основанные на сдвиге частоты волн:

определяется скорость кровотока, оценивается движение сердечных стенок и клапанов, что необходимо для эхокардиограммы;

проводится сканирование сосудов головы, шеи, конечностей, измеряется толщина их стенок, выясняется наличие или отсутствие тромбов;

отслеживается ход беременности.

Эффект Доплера, объясняющий зависимость между характеристикой волн и расстоянием до них, нашел широкое применение в жизни. Он позволяет проводить астрологические исследования, облегчает жизнь, обеспечивая людей охранными приборами, и вносит огромный вклад в диагностическую медицину.

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Между заряженными телами существует сила взаимодействия, благодаря которой они могут притягиваться или отталкиваться друг от друга. Закон Кулона описывает данную силу, показывает степень её действия в зависимости от размеров и формы самого тела. Об этом физическом законе пойдёт речь в данной статье.

Неподвижные точечные заряды

Закон Кулона применим к неподвижным телам, размер которых намного меньше их расстояния до других объектов. На таких телах сосредоточен точечный электрический заряд. При решении физических задач размерами рассматриваемых тел пренебрегают, т.к. они не имеют особого значения.

На практике покоящиеся точечные заряды изображаются следующим образом:

В данном случае q1 и q2 — это положительные электрические заряды, и на них действует сила Кулона (на рисунке не показана). Размеры точечных объектов не имеют значения.

Обратите внимание! Покоящиеся заряды располагаются друг от друга на заданном расстоянии, которое в задачах обычно обозначается буквой r. Далее в статье данные заряды будем рассматривать в вакууме.

Крутильные весы Шарля Кулона

Это прибор, разработанный Кулоном в 1777 году, помог вывести зависимость силы, названной в последствии в его честь. С его помощью изучается взаимодействие точечных зарядов, а также магнитных полюсов.

Крутильные весы имеют небольшую шёлковую нить, расположенную в вертикальной плоскости, на которой висит уравновешенный рычаг. На концах рычага расположены точечные заряды.

Под действием внешних сил рычаг начинает совершать движения по горизонтали. Рычаг будет перемещаться в плоскости до тех пор, пока его не уравновесит сила упругости нити.

В процессе перемещений рычаг отклоняется от вертикальной оси на определённый угол. Его принимают за d и называют углом поворота. Зная величину данного параметра, можно найти крутящий момент возникающих сил.

Крутильные весы Шарля Кулона выглядят следующим образом:

Коэффициент пропорциональности k и электрическая постоянная

В формуле закона Кулона есть параметры k — коэффициент пропорциональности или — электрическая постоянная. Электрическая постоянная представлена во многих справочниках, учебниках, интернете, и её не нужно считать! Коэффициент пропорциональности в вакууме на основе можно найти по известной формуле:

Здесь — электрическая постоянная,

— число пи,

— коэффициент пропорциональности в вакууме.

Дополнительная информация! Не зная представленные выше параметры, найти силу взаимодействия между двумя точечными электрическими зарядами не получится.
Формулировка и формула закона Кулона

Чтобы подытожить вышесказанное, необходимо привести официальную формулировку главного закона электростатики. Она принимает вид:

Сила взаимодействия двух покоящихся точечных зарядов в вакууме прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Причём произведение зарядов необходимо брать по модулю!

В данной формуле q1 и q2 — это точечные заряды, рассматриваемые тела; r 2 — расстояние на плоскости между этими телами, взятое в квадрате; k — коэффициент пропорциональности ( для вакуума).

Читайте также:
Закон Кулона формула зависимости силы взаимодействия электрических зарядов от расстояния, векторная форма, величина коэффициента пропорциональности, задачи

Направление силы Кулона и векторный вид формулы

Для полного понимания формулы закон Кулона можно изобразить наглядно:

F1,2 — сила взаимодействия первого заряда по отношению ко второму.

F2,1 — сила взаимодействия второго заряда по отношению к первому.

Также при решении задач электростатики необходимо учитывать важное правило: одноимённые электрические заряды отталкиваются, а разноимённые притягиваются. От этого зависит расположение сил взаимодействия на рисунке.

Если рассматриваются разноимённые заряды, то силы их взаимодействия будут направлены навстречу друг другу, изображая их притягивание.

Формула основного закона электростатики в векторном виде можно представить следующим образом:

— сила, действующая на точечный заряд q1, со стороны заряда q2,

— радиус-вектор, соединяющий заряд q2 с зарядом q1,

Важно! Записав формулу в векторном виде, взаимодействующие силы двух точечных электрических зарядов надо будет спроецировать на ось, чтобы правильно поставить знаки. Данное действие является формальностью и часто выполняется мысленно без каких-либо записей.

Где закон Кулона применяется на практике

Основной закон электростатики — это важнейшее открытие Шарля Кулона, которое нашло своё применение во многих областях.

Работы известного физика использовались в процессе изобретения различных устройств, приборов, аппаратов. К примеру, молниеотвод.

При помощи молниеотвода жилые дома, здания защищают от попадания молнии во время грозы. Таким образом, повышается степень защиты электрического оборудования.

Молниеотвод работает по следующему принципу: во время грозы на земле постепенно начинают скапливаться сильные индукционные заряды, которые поднимаются вверх и притягиваются к облакам. При этом на земле образуется немаленькое электрическое поле. Вблизи молниеотвода электрическое поле становится сильнее, благодаря чему от острия устройства зажигается коронный электрический заряд.

Далее образованный на земле заряд начинает притягиваться к заряду облака с противоположным знаком, как и должно быть согласно закону Шарля Кулона. После этого воздух проходит процесс ионизации, а напряжённость электрического поля становится меньше возле конца молниеотвода. Таким образом, риск попадания молнии в здание минимален.

Обратите внимание! Если в здание, на котором установлен молниеотвод, попадёт удар, то пожара не произойдёт, а вся энергия уйдёт в землю.

На основе закона Кулона было разработано устройство под названием “Ускоритель частиц”, которое пользуется большим спросом сегодня.

В данном приборе создано сильное электрическое поле, которое увеличивает энергию попадающих в него частиц.

Направление сил в законе Кулона

Как и говорилось выше, направление взаимодействующих сил двух точечных электрических зарядов зависит от их полярности. Т.е. одноимённые заряды будут отталкиваться, а разноимённые притягиваться.

Кулоновские силы также можно назвать радиус-вектором, т.к. они направлены вдоль линии, проведённой между ними.

В некоторых физических задачах даются тела сложной формы, которые не получается принять за точечный электрический заряд, т.е. пренебречь его размерами. В сложившейся ситуации рассматриваемое тело необходимо разбить на несколько мелких частей и рассчитывать каждую часть по отдельности, применяя закон Кулона.

Полученные при разбиении вектора сил суммируются по правилам алгебры и геометрии. В результате получается результирующая сила, которая и будет являться ответом для данной задачи. Данный способ решения часто называют методом треугольника.

История открытия закона

Взаимодействия двух точечных зарядов рассмотренным выше законом в первый раз были доказаны в 1785 Шарлем Кулоном. Доказать правдивость сформулированного закона физику удалось с использованием крутильных весов, принцип действия которых также был представлен в статье.

Кулон также доказал, что внутри сферического конденсатора нет электрического заряда. Так он пришёл к утверждению, что величину электростатических сил можно менять путём изменения расстояния между рассматриваемыми телами.

Таким образом, закон Кулона по-прежнему является главнейшим законом электростатики, на основе которого было сделано немало величайших открытий. В рамках данной статьи была представлена официальная формулировка закона, а также подробно описаны его составляющие части.

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Определение ёмкости последовательно или параллельно соединённых конденсаторов — формула

Определение площади сечения проводника по его диаметру

Что такое активная и реактивная мощность переменного электрического тока?

История открытия электричества

Что такое коэффициент трансформации трансформатора?

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: